Impact of meniscal coverage on subchondral bone mineral density of the proximal tibia in female subjects – A cross-sectional in vivo study using QCT

Bone ◽  
2020 ◽  
Vol 134 ◽  
pp. 115292 ◽  
Author(s):  
Frederike Sannmann ◽  
Jean-Denis Laredo ◽  
Christine Chappard ◽  
Klaus Engelke
2010 ◽  
Vol 23 (01) ◽  
pp. 31-36 ◽  
Author(s):  
M. E. Kara ◽  
F. Sevil

SummaryThe aim of the study was to evaluate the bone mineral density, as well as the biomechanic and morphometric changes in the femur of ovariectomised rabbits.Twenty-four six-month-old New Zealand rabbits were randomly divided into an ovariectomy (n = 12) and a sham (n = 12) group. Six rabbits in each group were euthanatized at eight and 16 weeks after surgery, and the femora were resected. The morphometric data were obtained from tomographic images. Periosteal and endosteal diameters and cortical thickness were measured. Total cross-sectional, cortical and medullary areas were also measured. The bone mineral content, the bone area and the bone mineral density were measured from the proximal, distal and mid-shaft of the femur as well as the total femur by dual energy X-ray absorptiometry. Employing the three-point bending method, the ultimate force, stiffness and work-to-failure were measured. The mechanical data were normalised to obtain intrinsic biomechanical properties such as ultimate stress, elastic modulus, and toughness, all of which are independent of size and shape.The results indicated that the femur was both larger and weaker 16 weeks after surgery in the ovariectomised group. Results also suggest that the rabbit might be a useful animal model for investigation of diseases related to oestrogen loss such as human postmenopausal osteoporosis. However, additional studies with advanced techniques at several time points via in vivo animal studies, and precision and predictability analyses should be designed to standardise the rabbit as a model for osteoporosis.


2018 ◽  
Vol 12 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Nathan Robert Wanderman ◽  
Cindy Mallet ◽  
Hugo Giambini ◽  
Nirong Bao ◽  
Chunfeng Zhao ◽  
...  

<sec><title>Study Design</title><p>Experimental Animal Model.</p></sec><sec><title>Purpose</title><p>The aim of our study was to validate a pure bilateral ovariectomy (OVX) female New Zealand white rabbit model of postmenopausal osteoporosis utilizing animal-sparing <italic>in vivo</italic> techniques for evaluating bone mineral density (BMD). We also sought to demonstrate that bilateral OVX in female New Zealand white rabbits can produce diminished BMD in the spinal column and simulate osteoporosis, without the need for adjuvant chemotherapeutic agents (i.e., no additional glucocorticosteroids or other drugs were used for stimulating accelerated BMD loss), which can be assessed by <italic>in vivo</italic> BMD testing.</p></sec><sec><title>Overview of Literature</title><p>Multiple animal models of postmenopausal osteoporosis have been described. Rat ovariectomy models have been successful, but are limited by rats' inability to achieve true skeletal maturity and a slight morphology that limits surgical instrumentation. Rabbit models have been described which do not have these limitations, but previous models have relied on adjunctive steroid therapy to achieve osteoporosis and have required animal sacrifice for bone mineral density assessment.</p></sec><sec><title>Methods</title><p>Thirty-six skeletally mature female rabbits underwent bilateral OVX. BMD was measured using dual-energy X-ray absorptiometry on the metaphysis of the proximal tibia and distal femur, at baseline and 17 weeks postoperatively.</p></sec><sec><title>Results</title><p>Mean BMD values were significantly reduced by 21.9% (<italic>p</italic>&lt;0.05) in the proximal tibia and 11.9% (<italic>p</italic>&lt;0.001) in the distal femur at 17 weeks.</p></sec><sec><title>Conclusions</title><p>This study is the first to demonstrate a significant bone loss within four months of pure OVX in rabbits using animal-sparing validation techniques. We believe that this OVX model is safe, reproducible, and can be employed to longitudinally evaluate the effect of anti-osteoporosis therapeutics and surgical interventions.</p></sec>


2011 ◽  
Vol 20 (03) ◽  
pp. 248-251
Author(s):  
H. R. Meybodi ◽  
N. Khalili ◽  
P. Khashayar ◽  
R. Heshmat ◽  
A. Hossein-nezhad ◽  
...  

SummaryThe present cross-sectional research was designed to study possible correlations between clinical reproductive factors and bone mineral density (BMD) values.Using the data gathered by the population-based Iranian Multicenter Osteoporosis Study (IMOS), we investigated the correlation found between reproductive factors and osteoporosis. Subjects were recruited from five major cities of Iran. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry and the results were analyzed against the age at menarche and at menopause, number of pregnancies, children and abortions, and the history (and duration) of breastfeeding.Data was available for 2528 women. Gravidity and number of children were reversely correlated with BMD. Younger age at menarche was associated with higher BMD values, whereas there was no significant correlation between age at menopause and menstrual history and BMD.Our study suggests that clinical reproductive factors, particularly number of children and breastfeeding, could be incorporated as predictors of BMD levels in women. Given the controversial results obtained in different studies, longitudinal studies should be carried out to enlighten the importance of these factors and the rationale of their use to predict BMD values in different settings.


Sign in / Sign up

Export Citation Format

Share Document