scholarly journals Selective Diffusion Barriers Separate Membrane Compartments

2010 ◽  
Vol 99 (1) ◽  
pp. L1-L3 ◽  
Author(s):  
Andreas Bruckbauer ◽  
Paul D. Dunne ◽  
Peter James ◽  
Elizabeth Howes ◽  
Dejian Zhou ◽  
...  
2019 ◽  
Vol 20 (10) ◽  
pp. 3842-3854 ◽  
Author(s):  
Valentin Dunsing ◽  
Tobias Irmscher ◽  
Stefanie Barbirz ◽  
Salvatore Chiantia

2011 ◽  
Vol 21 (9) ◽  
pp. 543-551 ◽  
Author(s):  
Oliver Lieleg ◽  
Katharina Ribbeck

Author(s):  
N. Rozhanski ◽  
V. Lifshitz

Thin films of amorphous Ni-Nb alloys are of interest since they can be used as diffusion barriers for integrated circuits on Si. A native SiO2 layer is an effective barrier for Ni diffusion but it deformation during the crystallization of the alloy film lead to the appearence of diffusion fluxes through it and the following formation of silicides. This study concerns the direct evidence of the action of stresses in the process of the crystallization of Ni-Nb films on Si and the structure of forming NiSi2 islands.


Author(s):  
Peter K. Hepler ◽  
Dale A. Callaham

Calcium ions (Ca) participate in many signal transduction processes, and for that reason it is important to determine where these ions are located within the living cell, and when and to what extent they change their local concentration. Of the different Ca-specific indicators, the fluorescent dyes, developed by Grynkiewicz et al. (1), have proved most efficacious, however, their use on plants has met with several problems (2). First, the dyes as acetoxy-methyl esters are often cleaved by extracellular esterases in the plant cell wall, and thus they do not enter the cell. Second, if the dye crosses the plasma membrane it may continue into non-cytoplasmic membrane compartments. Third, even if cleaved by esterases in the cytoplasm, or introduced as the free acid into the cytoplasmic compartment, the dyes often become quickly sequestered into vacuoles and organelles, or extruded from the cell. Finally, the free acid form of the dye readily complexes with proteins reducing its ability to detect free calcium. All these problems lead to an erroneous measurement of calcium (2).


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


Sign in / Sign up

Export Citation Format

Share Document