effective barrier
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 49)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 4 (4) ◽  
pp. 80
Author(s):  
Tânia Moniz ◽  
Sofia A. Costa Lima ◽  
Salette Reis

Stratum corneum (SC) represents the outermost layer of the skin, being an effective barrier against the entry of molecules and pathogens. Skin research has given particular focus to SC as it hampers effective drug delivery for cosmetical and therapeutical purposes. Following recommendations to develop alternative models to animals, the SC isolated from skin obtained from medical procedures or from pigs has gained extensive attention. Yet, there is still missing a standard and simple procedure accepted within the scientific community to avoid application of different isolated SC methodologies, a fact that may hamper progress in skin research. Considering this challenge, the present study evaluated different experimental conditions aiming to establish a useful and sustainable solvent-free procedure for the obtention of a realistic SC model. The studied trypsin digestion parameters included concentration, incubation period and temperature. Isolated SC was characterized using histological analysis and calcein’s permeability, after the procedure and during a 6-week storage period. Data recommend trypsin digestion at 4 °C for 20 h as the most effective procedure to isolate SC from pig ear skin. This work contributes to standardize the SC isolation procedure, and to obtain a valuable and reliable SC mimetic model for skin drug development.


2021 ◽  
Vol 171 ◽  
pp. 105476
Author(s):  
Xiaomei Chi ◽  
Fangyuan Hu ◽  
Chuanxin Qin ◽  
Xiyuan Huang ◽  
Jiangnan Sun ◽  
...  

2021 ◽  
Author(s):  
Jing Wang ◽  
Ning Wang ◽  
Qianyu Zhao ◽  
Chengyue Ge ◽  
Baorong Hou ◽  
...  

Abstract Two-dimensional nanomaterials are of great interest because of their unique properties and the great application potential in various fields. In this study, the performance of few-layer MoS2 nanosheets (MDNSs) as new nanofillers to enhance the barrier properties of poly(vinyl butyral) (PVB) is investigated. Gas permeability tests show that well-dispersed MDNSs can prevent at least 98% of oxygen molecules and 31% of water vapour from penetrating through the matrix of MDNS/PVB composites. Electrochemical analyses reveal that the corrosion rate of brass coated with the resulting composite coating is as low as 1.35×10− 8 mm/year, which is six orders of magnitude smaller than that of brass protected by a pristine PVB coating. These results indicate that MDNSs are highly effective barrier enhancers and suitable candidate materials for metal protection.


2021 ◽  
Author(s):  
Michal Mandelboim ◽  
Ella Mendelson ◽  
Yaron Drori ◽  
Nofar Atari ◽  
Tair Lapidot ◽  
...  

Abstract While vaccination efforts against SARS-CoV-2 around the world are ongoing, new highly infectious virus variants continue to evolve. The protection provided by the available vaccines against some of the new variants is weaker. Additional preventive measures will therefore be needed to protect the population until effective vaccinations are widely available. TaffiX® is an anti-viral nasal powder spray comprised of low-pH hypromellose, which forms a protective mechanical barrier that prevents viruses from engaging with nasal cells. The current study aimed to test the protective effect of Taffix against Alpha (B.1.1.7; hCoV-19/Israel/CVL-46879-ngs/2020), Beta, (B.1.351; hCoV-19/Israel/CVL-2557-ngs/2020) and Delta (B.1.617.2; hCoV-19/Israel/VVL-12806/2021), three highly infectious and pathogenic SARS-CoV-2 strains. A nylon filter was treated with Taffix® gel, after which SARS-CoV-2 Alpha, Beta or Delta was seeded. After a 10-min incubation, the downstream side of each filter was washed, and the rinse was collected and placed over Vero-E6 cells. After 5 days of incubation, viral RNA was extracted and subjected to SARS-CoV-2 RT-PCR analysis. Taffix® fully blocked passage of all three tested SARS-CoV-2 variants, as demonstrated by a 100% reduction of recoverable viral RNA from Vero-E6 cells treated with filter rinse. These results support its use as an effective barrier against new variants of SARS-CoV-2 in conjunction with other protective measures.


2021 ◽  
Author(s):  
Michal Mandelboim ◽  
Ella Mendelson ◽  
Yaron Drori ◽  
Nofar Atari ◽  
Tair Lapidot ◽  
...  

Abstract Introduction: While vaccination efforts against SARS-CoV-2 around the world are ongoing -, new high-infectious variants of the virus are being detected. The protection of the available vaccines against some of the new variants is weaker, and experts are concerned that newer as yet undescribed variants of this mutated RNA virus will eventually prove stable against the current vaccines. Additional preventive measures will therefore be needed to protect the population until effective vaccinations are widely available.TaffiX® is a personal, anti-viral nasal powder spray comprised of low pH Hypromellose that upon insufflation into the nose creates a thin gel layer covering the nasal mucosa and forming a protective mechanical barrier that prevents viruses from engaging with nasal cells- the main portal of entry for viruses. Taffix is commercially available in many countries across Europe, Asia America and Africa. In a prior preclinical study, TaffiX® was found to be effective against SARS-CoV-2 Hong Kong/VM20001061/2020 in experimental in vitro conditions. A real-life clinical survey demonstrated that TaffiX® nasal spray significantly reduced the SARS-CoV-2 infection rate post mass-gathering event in a highly endemic community.Objective: The current study aimed to test the protective effect of Taffix against new pathogenic, highly infectious SARS-CoV-2 variants in vitro: the “British” B.1.1.7 (hCoV-19/Israel/CVL-46879-ngs/2020) and the “South African” B.1.351 (hCoV-19/Israel/CVL-2557-ngs/2020) variants.Study design: A TaffiX® gel was formed on a nylon filter, using an amount equivalent to a clinical dose of Taffix . Filters were then seeded with SARS-CoV-2 B.1.1.7 (“British”) and B.1.351 (“South African”) variants. After a 10 -minute incubation at room temperature, the bottom of each filter was washed, and the resulting flow-through was collected and seeded into 24 -well plates containing Vero-E6 cells. After 5 days of incubation, a 200 µl sample from each well was taken for viral RNA extraction followed by SARS-CoV 2 RT-PCR analysis.Results: The TaffiX® gel completely blocked SARS-CoV-2 highly infectious variants B.1.1.7 and B.1.351 in vitro, reducing the titer of recoverable infectious virus as well as viral RNA by 100%.Conclusions: Under in vitro conditions, TaffiX® formed an effective protective barrier against SARS-COV-2 variants (British variant and South African Variant). These results are consistent with prior findings demonstrating the in vitro high efficacy of Taffix gel in preventing viruses from reaching cells and infecting them. These results, added to clinical real-life studies performed with Taffix , support its use as an effective barrier against new variants of SARS-CoV-2 in conjunction with other protective measures.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Natalia Makuch ◽  
Piotr Dziarski

Abstract Gas boriding was used to produce the borided layer containing a mixture of chromium and nickel borides on the Inconel®600-alloy. The borided sample was characterized by a higher corrosion potential (−0.953 V) than the non-borided sample (−1.005 V). The corrosion current density was significantly lower for the borided sample. The oxidation at 1000 °C for 24 h caused the formation of different oxides on the surface of the borided sample. Simultaneously, the presence of nickel and chromium borides was confirmed by XRD analysis after the oxidation test. It was concluded, that the gas boriding could be an effective barrier against corrosion and oxidation of Inconel®600-alloy.


2021 ◽  
Vol 37 (1) ◽  
pp. 20-27
Author(s):  
Benjamin E. McMillan ◽  
Brandi L. Benedict ◽  
Carlyle C. Brewster ◽  
Nicola T. Gallagher ◽  
Sally L. Paulson

ABSTRACT The effects of 3 plant species (Cornus florida [dogwood], rhododendron X ‘Chionoides' [rhododendron], and Ilex opaca [American holly]), 4 insecticide treatments (Demand® CS [lambda-cyhalothrin] at 6.25 ml[AI]/liter; Talstar® Professional [bifenthrin] at 7.81 ml[AI]/liter, and Suspend® Polyzone® [deltamethrin] at 11.72 ml[AI]/liter, and water), and 2 physiological states (blood-fed and unfed) were evaluated for knockdown (1 h) and mortality (24 h) against female Aedes albopictus over an 8-wk sampling period. Analyses determined that there was a significant interaction between the tested plant species and the insecticides evaluated. Significant differences were likewise observed between the insecticide treatments for unfed Ae. albopictus females, with Demand CS demonstrating the highest knockdown and mortality rates (from >90% to >10% at wk 8 and >95% to ∼50% at wk 8, respectively), followed by Talstar Professional (from >75% to <10% at wk 2 and >90% to <10% at wk 2, respectively) and Suspend Polyzone (from >20% to <10% at wk 8 and >25% to >50% at wk 8, respectively). All treatments were no longer significant for knockdown or mortality at the end of the 8-wk timeframe. Significant differences were also observed between insecticide treatments for blood-fed Ae. albopictus females; Demand CS showed high knockdown and mortality rates (from 100% to ∼50% at wk 8 and 100% to >60% at wk 8, respectively), Suspend Polyzone rates were similar to Demand CS (from >80% to ∼50% at wk 8 and ∼90% to >65% at wk 8, respectively), and both were followed by Talstar Professional (from 100% to <10% at wk 4 and 100% to <20% at wk 4, respectively). All tested pyrethroid sprays showed a significant increase in effectiveness against recently blood-fed Ae. albopictus females, as compared to the unfed females. These results suggest that Demand CS can be used as an effective barrier spray against Ae. albopictus adults due to the limited impact of target foliage, its long-term efficacy under environmental conditions, and its continued effectiveness regardless of the blood meal status of the target mosquito.


2021 ◽  
Vol 2 (1) ◽  
pp. 76-81
Author(s):  
Leon Alexander

The goals of cleft palate surgery are an effective barrier between the nasal and oral air passages leading to functional outcomes in terms of speech, feeding and hearing for the affected child. But unfortunately, these goals are sometimes not easily attained and complicated by Cleft Palate Fistulas (CPFs), which adversely affects not only the child but also the parents. The principles of cleft palate surgery include a two-layer, tension-free, watertight closure with preservation of the greater palatine neurovascular pedicle. This article aims to give a broad review of the current perspectives in the management of this distressing complication.


Sign in / Sign up

Export Citation Format

Share Document