Stress Relaxation and the Formation of Silicides in the Process of the Crystallization of NI-NB Films on SI

Author(s):  
N. Rozhanski ◽  
V. Lifshitz

Thin films of amorphous Ni-Nb alloys are of interest since they can be used as diffusion barriers for integrated circuits on Si. A native SiO2 layer is an effective barrier for Ni diffusion but it deformation during the crystallization of the alloy film lead to the appearence of diffusion fluxes through it and the following formation of silicides. This study concerns the direct evidence of the action of stresses in the process of the crystallization of Ni-Nb films on Si and the structure of forming NiSi2 islands.

1991 ◽  
Vol 226 ◽  
Author(s):  
M.A. Korhonen ◽  
P. Bergesen ◽  
Che-Yu Li

AbstractThe yield strength of metallic thin films bonded to hard substrates can be significantly higher than is customary for bulk samples of the same metal. This is related to the constrained nature of the deformation. The constrained deformation, as well as the commonly observed crystallographic texture of thin films, places restrictive conditions on the mechanisms of deformation that produce stress relaxation. In narrow aluminum based metallizations used as interconnects in large scale integrated circuits thermal stress induced voiding provides an effective means for stress relaxation. For these interconnects, the stress state is tensile after excursions to higher temperatures; the stresses relax mainly by dislocation glide and grain boundary sliding during the cooldown, while the longer term relaxation is governed by stress-induced voiding and dislocation creep.


1991 ◽  
Vol 225 ◽  
Author(s):  
M. A. Korhonen ◽  
P. Brørgesen ◽  
Che-Yu Li

ABSTRACTThe yield strength of metallic thin films bonded to hard substrates can be significantly higher than is customary for bulk samples of the same metal. This is related to the constrained nature of the deformation. The constrained deformation, as well as the commonly observed crystallographic texture of thin films, places restrictive conditions on the mechanisms of deformation that produce stress relaxation. In narrow aluminum based metallizations used as interconnects in large scale integrated circuits thermal stress induced voiding provides an effective means for stress relaxation. For these interconnects, the stress state is tensile after excursions to higher temperatures; the stresses relax mainly by dislocation glide and grain boundary sliding during the cooldown, while the longer term relaxation is governed by stress-induced voiding and dislocation creep.


1998 ◽  
Vol 514 ◽  
Author(s):  
W. F. McArthur ◽  
K. M. Ring ◽  
B. Morgan ◽  
Q. Hurst ◽  
D. Serber ◽  
...  

ABSTRACTAmorphous Ti-Si-N thin films are effective barriers to Cu diffusion in integrated circuits that use Cu interconnects. These films are believed to fail as diffusion barriers due to crystallization and subsequent diffusion of Cu along grain boundaries. We prepare thin films of Ti-Si-N by RF magnatron co-sputtering of Ti and Si in Ar/N2. Ti-Si-N films with Si concentrations of 6 to 22% have resistivities <500μΩ-cm. In previous reports we have shown that Si pn-junction diodes metallized with 20nm Ti40Si15N45/Cu do not fail (increased reverse leakage current) until 600%C. When annealed, these films crystallize to yield TiN and Si3N4. In this work we have studied the effect of oxygen on the degradation of the barrier via TEM, diode I-V measurements, and RBS. Oxygen incorporated into the film deposition process improves the barrier effectiveness as measured by diode I-V reverse leakage current. We find no correlation between the amount of O2 in the process gas feed stream and the film composition with O resonance analysis (RBS) or crystallinity (TEM).


Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
Nathan Wang ◽  
Saunil Shah ◽  
Camille Garcia ◽  
Vicente Pasating ◽  
George Perreault

Abstract MEMS samples, with their relatively large size and weight, present a unique challenge to the failure analyst as they also included thin films and microstructures used in conventional integrated circuits. This paper describes how to accommodate the large MEMS structures without skimping on the microanalyses needed to get to the root cause. Investigations of tuning folk gyroscopes were used to demonstrate these new techniques.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2003 ◽  
Vol 220 (1-4) ◽  
pp. 349-358 ◽  
Author(s):  
Shun-Tang Lin ◽  
Yu-Lin Kuo ◽  
Chiapyng Lee

Sign in / Sign up

Export Citation Format

Share Document