scholarly journals Substrate Binding Effects of Carbohydrate Binding Modules on the Catalytic Activity of a Multifunctional Cellulase

2015 ◽  
Vol 108 (2) ◽  
pp. 225a
Author(s):  
Johnnie A. Walker ◽  
Taichi E. Takasuka ◽  
Kai Deng ◽  
Christopher M. Bianchetti ◽  
Hannah Udell ◽  
...  
2020 ◽  
Vol 295 (15) ◽  
pp. 5012-5021 ◽  
Author(s):  
Fernanda Mandelli ◽  
Mariana Abrahão Bueno de Morais ◽  
Evandro Antonio de Lima ◽  
Leane Oliveira ◽  
Gabriela Felix Persinoti ◽  
...  

β-Mannanases from the glycoside hydrolase 26 (GH26) family are retaining hydrolases that are active on complex heteromannans and whose genes are abundant in rumen metagenomes and metatranscriptomes. These enzymes can exhibit distinct modes of substrate recognition and are often fused to carbohydrate-binding modules (CBMs), resulting in a molecular puzzle of mechanisms governing substrate preference and mode of action that has not yet been pieced together. In this study, we recovered a novel GH26 enzyme with a CBM35 module linked to its N terminus (CrMan26) from a cattle rumen metatranscriptome. CrMan26 exhibited a preference for galactomannan as substrate and the crystal structure of the full-length protein at 1.85 Å resolution revealed a unique orientation of the ancillary domain relative to the catalytic interface, strategically positioning a surface aromatic cluster of the ancillary domain as an extension of the substrate-binding cleft, contributing to galactomannan preference. Moreover, systematic investigation of nonconserved residues in the catalytic interface unveiled that residues Tyr195 (−3 subsite) and Trp234 (−5 subsite) from distal negative subsites have a key role in galactomannan preference. These results indicate a novel and complex mechanism for substrate recognition involving spatially remote motifs, distal negative subsites from the catalytic domain, and a surface-associated aromatic cluster from the ancillary domain. These findings expand our molecular understanding of the mechanisms of substrate binding and recognition in the GH26 family and shed light on how some CBMs and their respective orientation can contribute to substrate preference.


2008 ◽  
Vol 410 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Elien Vandermarliere ◽  
Tine M. Bourgois ◽  
Sigrid Rombouts ◽  
Steven van Campenhout ◽  
Guido Volckaert ◽  
...  

GH 11 (glycoside hydrolase family 11) xylanases are predominant enzymes in the hydrolysis of heteroxylan, an abundant structural polysaccharide in the plant cell wall. To gain more insight into the protein–ligand interactions of the glycone as well as the aglycone subsites of these enzymes, catalytically incompetent mutants of the Bacillus subtilis and Aspergillus niger xylanases were crystallized, soaked with xylo-oligosaccharides and subjected to X-ray analysis. For both xylanases, there was clear density for xylose residues in the −1 and −2 subsites. In addition, for the B. subtilis xylanase, there was also density for xylose residues in the −3 and +1 subsite showing the spanning of the −1/+1 subsites. These results, together with the observation that some residues in the aglycone subsites clearly adopt a different conformation upon substrate binding, allowed us to identify the residues important for substrate binding in the aglycone subsites. In addition to substrate binding in the active site of the enzymes, the existence of an unproductive second ligand-binding site located on the surface of both the B. subtilis and A. niger xylanases was observed. This extra binding site may have a function similar to the separate carbohydrate-binding modules of other glycoside hydrolase families.


2019 ◽  
Vol 21 (38) ◽  
pp. 21485-21496 ◽  
Author(s):  
Ruihan Wang ◽  
Dingguo Xu

MD simulations were applied to address the substrate binding specificity of carbohydrate binding modules to a cello-oligosaccharide and a xylo-oligosaccharide.


2021 ◽  
Author(s):  
Eva Madland ◽  
Zarah Forsberg ◽  
Yong Wang ◽  
Kresten Lindorff-Larsen ◽  
Axel Niebisch ◽  
...  

AbstractAmong the extensive repertoire of carbohydrate-active enzymes, lytic polysaccharide monooxygenases (LPMOs) have a key role in recalcitrant biomass degradation. LPMOs are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides such as cellulose and chitin. Several LPMOs contain carbohydrate-binding modules (CBMs) that are known to promote LPMO efficiency. Still, structural and functional properties of some of these CBMs remain unknown and it is not clear why some LPMOs, like CjLPMO10A from Cellvibrio japonicus, have two CBMs (CjCBM5 and CjCBM73). Here, we studied substrate binding by these two CBMs to shine light on the functional variation, and determined the solution structures of both by NMR, which includes the first structure of a member of the CBM73 family. Chitin-binding experiments and molecular dynamics simulations showed that, while both CBMs bind crystalline chitin with Kd values in the µM range, CjCBM73 has higher affinity than CjCBM5. Furthermore, NMR titration experiments showed that CjCBM5 binds soluble chitohexaose, whereas no binding to soluble chitin was detected for CjCBM73. These functional differences correlated with distinctly different architectures of the substrate-binding surfaces of the two CBMs. Taken together, these results provide insight into natural variation among related chitin-binding CBMs and the possible functional implications of such variation.


Amylase ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 38-49
Author(s):  
Connie Pontoppidan ◽  
Svend G. Kaasgaard ◽  
Carsten P. Sønksen ◽  
Carsten Andersen ◽  
Birte Svensson

Abstract The industrial thermostable Bacillus licheniformis α-amylase (BLA) has wide applications, including in household detergents, and efforts to improve its performance are continuously ongoing. BLA during the industrial production is deamidated and glycated resulting in multiple forms with different isoelectric points. Forty modified positions were identified by tandem mass spectrometric peptide mapping of BLA forms separated by isoelectric focusing. These modified 12 asparagine, 9 glutamine, 8 arginine and 11 lysine residues are mostly situated on the enzyme surface and several belong to regions involved in stability, activity and carbohydrate binding. Eight residues presumed to interact with starch at the active site and surface binding sites (SBSs) were subjected to mutational analysis. Five mutants mimicking deamidation (N→D, Q→E) at the substrate binding cleft showed moderate to no effect on thermostability and k cat and K M for maltoheptaose and amylose. Notably, the mutations improved laundry wash efficiency in detergents at pH 8.5 and 10.0. Replacing three reducing sugar reactive side chains (K→M, R→L) at a distant substrate binding region and two SBSs enhanced wash performance especially in liquid detergent at pH 8.5, slightly improved enzymatic activity and maintained thermostability. Wash performance was most improved (5-fold) for the N265D mutant near substrate binding subsite +3.


2021 ◽  
pp. 100638
Author(s):  
Marie Sofie Møller ◽  
Souad El Bouaballati ◽  
Bernard Henrissat ◽  
Birte Svensson

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3175
Author(s):  
Mariana Barbosa ◽  
Hélvio Simões ◽  
Duarte Miguel F. Prazeres

Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others.


Sign in / Sign up

Export Citation Format

Share Document