scholarly journals Determination of Protein Coarse-Grained Potentials by Machine Learning Approaches

2020 ◽  
Vol 118 (3) ◽  
pp. 180a
Author(s):  
Eric Vazquez ◽  
Rachel Thomas ◽  
Rafael Zamora-Resendiz ◽  
Yu-Hang Tang ◽  
Masakatsu Watanabe ◽  
...  
2018 ◽  
Vol 4 (1) ◽  
pp. 673-676
Author(s):  
Philipp Wegerich ◽  
Gehring Hartmut

AbstractThe interest of this paper is the determination of the optical properties of oxygenated (saturation above 97 %) hemoglobin in clinical relevant concentrations (ranging from 5 to 15 g/dl), dependent on the layer thickness. Furthermore the generation of a high rate data set for training with machine learning approaches was intended. With a double integrating sphere setup (laser diodes from 780 to 1310 nm) - as a well referenced method - and flow through optical cuvettes ranging from 1 to 3 mm layer thickness, the transmission (𝑀𝑇) and reflection (𝑀𝑅) values of the samples were acquired. From those the layer thickness independent absorption (𝜇𝑎) and reduced scattering coefficients (𝜇𝑠’) were calculated by the means of the Inverse Adding Doubling (IAD) algorithm. For each sample the same coefficients should result correspondingly for all cuvette thicknesses in test. This relationship serves as an internal standard in the evaluation of the collected data sets. In parallel a spectrophotometer in the range from 690 to 1000 nm recorded transmission spectra for all samples as a second reference. First, the IAD algorithm provided optical coefficients (𝜇𝑎, 𝜇𝑠’) in all measurements, with few exceptions at low hemoglobin concentrations. The resulting coefficients match independently of the layer thickness. As a main second result, a high rate data set was generated which serves for further analysis - for example with machine learning approaches.


2021 ◽  
Author(s):  
Pooja Chaturvedi ◽  
Ajai Kumar Daniel ◽  
Vipul Narayan

Abstract Mathematical programming techniques are widely used in the determination of optimal functional configuration of a wireless sensor network (WSN). But these techniques have usually high computational complexity and are often considered as Non Polynomial (NP) complete problems. Therefore, machine learning (ML) techniques can be utilized for the prediction of the WSN parameters with high accuracy and lesser computational complexity than the mathematical programming techniques. This paper focuses on developing the prediction model for determination of the node status to be included in the set cover based on the coverage probability and trust values of the nodes. The set covers are defined as the subset of nodes which are scheduled to monitor the region of interest with the desired coverage level. Several machine learning techniques have been used to determine the node activation status based on which the set covers are obtained. The results show that the random forest based prediction model yields the highest accuracy for the considered network setting.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5426
Author(s):  
Lisa Giese ◽  
Jörg Melzheimer ◽  
Dirk Bockmühl ◽  
Bernd Wasiolka ◽  
Wanja Rast ◽  
...  

Behavioural studies of elusive wildlife species are challenging but important when they are threatened and involved in human-wildlife conflicts. Accelerometers (ACCs) and supervised machine learning algorithms (MLAs) are valuable tools to remotely determine behaviours. Here we used five captive cheetahs in Namibia to test the applicability of ACC data in identifying six behaviours by using six MLAs on data we ground-truthed by direct observations. We included two ensemble learning approaches and a probability threshold to improve prediction accuracy. We used the model to then identify the behaviours in four free-ranging cheetah males. Feeding behaviours identified by the model and matched with corresponding GPS clusters were verified with previously identified kill sites in the field. The MLAs and the two ensemble learning approaches in the captive cheetahs achieved precision (recall) ranging from 80.1% to 100.0% (87.3% to 99.2%) for resting, walking and trotting/running behaviour, from 74.4% to 81.6% (54.8% and 82.4%) for feeding behaviour and from 0.0% to 97.1% (0.0% and 56.2%) for drinking and grooming behaviour. The model application to the ACC data of the free-ranging cheetahs successfully identified all nine kill sites and 17 of the 18 feeding events of the two brother groups. We demonstrated that our behavioural model reliably detects feeding events of free-ranging cheetahs. This has useful applications for the determination of cheetah kill sites and helping to mitigate human-cheetah conflicts.


2019 ◽  
Vol 70 (3) ◽  
pp. 214-224
Author(s):  
Bui Ngoc Dung ◽  
Manh Dzung Lai ◽  
Tran Vu Hieu ◽  
Nguyen Binh T. H.

Video surveillance is emerging research field of intelligent transport systems. This paper presents some techniques which use machine learning and computer vision in vehicles detection and tracking. Firstly the machine learning approaches using Haar-like features and Ada-Boost algorithm for vehicle detection are presented. Secondly approaches to detect vehicles using the background subtraction method based on Gaussian Mixture Model and to track vehicles using optical flow and multiple Kalman filters were given. The method takes advantages of distinguish and tracking multiple vehicles individually. The experimental results demonstrate high accurately of the method.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document