Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches

2019 ◽  
Vol 336 ◽  
pp. 3-21 ◽  
Author(s):  
Alexander A. Guda ◽  
Sergey A. Guda ◽  
Kirill A. Lomachenko ◽  
Mikhail A. Soldatov ◽  
Ilia A. Pankin ◽  
...  
2020 ◽  
Vol 12 (10) ◽  
pp. 1586
Author(s):  
Leonardo F. Arias-Rodriguez ◽  
Zheng Duan ◽  
Rodrigo Sepúlveda ◽  
Sergio I. Martinez-Martinez ◽  
Markus Disse

Remote-sensing-based machine learning approaches for water quality parameters estimation, Secchi Disk Depth (SDD) and Turbidity, were developed for the Valle de Bravo reservoir in central Mexico. This waterbody is a multipurpose reservoir, which provides drinking water to the metropolitan area of Mexico City. To reveal the water quality status of inland waters in the last decade, evaluation of MERIS imagery is a substantial approach. This study incorporated in-situ collected measurements across the reservoir and remote sensing reflectance data from the Medium Resolution Imaging Spectrometer (MERIS). Machine learning approaches with varying complexities were tested, and the optimal model for SDD and Turbidity was determined. Cross-validation demonstrated that the satellite-based estimates are consistent with the in-situ measurements for both SDD and Turbidity, with R2 values of 0.81 to 0.86 and RMSE of 0.15 m and 0.95 nephelometric turbidity units (NTU). The best model was applied to time series of MERIS images to analyze the spatial and temporal variations of the reservoir’s water quality from 2002 to 2012. Derived analysis revealed yearly patterns caused by dry and rainy seasons and several disruptions were identified. The reservoir varied from trophic to intermittent hypertrophic status, while SDD ranged from 0–1.93 m and Turbidity up to 23.70 NTU. Results suggest the effects of drought events in the years 2006 and 2009 on water quality were correlated with water quality detriment. The water quality displayed slow recovery through 2011–2012. This study demonstrates the usefulness of satellite observations for supporting inland water quality monitoring and water management in this region.


1999 ◽  
Vol 54 (8-9) ◽  
pp. 503-506
Author(s):  
Mohammad A. Qtaitat

The Conformational stability and barriers of interconversion between the eis and gauche conformers of vinyldichlorosilane, CH2CHSiHCl2 , have been studied using ab initio calculations employing the RHF/3-21G* and RHF/6-31G* basis sets. The eis conformer was found to be more stable than the gauche one by 45 cm-1 (539 J/mol) and 140 cm-1 (1.68 kJ/mol) from the RHF/3-21G* and RHF/6-31G* basis sets, respectively. Additionally, the structural parameters of both rotamers have been calculated. These results are compared with results of related molecules.


2020 ◽  
Vol 26 (15) ◽  
pp. 3411-3419 ◽  
Author(s):  
Karl P. J. Gustafson ◽  
Arnar Guðmundsson ◽  
Éva G. Bajnóczi ◽  
Ning Yuan ◽  
Xiaodong Zou ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11910
Author(s):  
Dalia Mahmoud ◽  
Marcin Magolon ◽  
Jan Boer ◽  
M.A Elbestawi ◽  
Mohammad Ghayoomi Mohammadi

One of the main issues hindering the adoption of parts produced using laser powder bed fusion (L-PBF) in safety-critical applications is the inconsistencies in quality levels. Furthermore, the complicated nature of the L-PBF process makes optimizing process parameters to reduce these defects experimentally challenging and computationally expensive. To address this issue, sensor-based monitoring of the L-PBF process has gained increasing attention in recent years. Moreover, integrating machine learning (ML) techniques to analyze the collected sensor data has significantly improved the defect detection process aiming to apply online control. This article provides a comprehensive review of the latest applications of ML for in situ monitoring and control of the L-PBF process. First, the main L-PBF process signatures are described, and the suitable sensor and specifications that can monitor each signature are reviewed. Next, the most common ML learning approaches and algorithms employed in L-PBFs are summarized. Then, an extensive comparison of the different ML algorithms used for defect detection in the L-PBF process is presented. The article then describes the ultimate goal of applying ML algorithms for in situ sensors, which is closing the loop and taking online corrective actions. Finally, some current challenges and ideas for future work are also described to provide a perspective on the future directions for research dealing with using ML applications for defect detection and control for the L-PBF processes.


2018 ◽  
Vol 4 (1) ◽  
pp. 673-676
Author(s):  
Philipp Wegerich ◽  
Gehring Hartmut

AbstractThe interest of this paper is the determination of the optical properties of oxygenated (saturation above 97 %) hemoglobin in clinical relevant concentrations (ranging from 5 to 15 g/dl), dependent on the layer thickness. Furthermore the generation of a high rate data set for training with machine learning approaches was intended. With a double integrating sphere setup (laser diodes from 780 to 1310 nm) - as a well referenced method - and flow through optical cuvettes ranging from 1 to 3 mm layer thickness, the transmission (𝑀𝑇) and reflection (𝑀𝑅) values of the samples were acquired. From those the layer thickness independent absorption (𝜇𝑎) and reduced scattering coefficients (𝜇𝑠’) were calculated by the means of the Inverse Adding Doubling (IAD) algorithm. For each sample the same coefficients should result correspondingly for all cuvette thicknesses in test. This relationship serves as an internal standard in the evaluation of the collected data sets. In parallel a spectrophotometer in the range from 690 to 1000 nm recorded transmission spectra for all samples as a second reference. First, the IAD algorithm provided optical coefficients (𝜇𝑎, 𝜇𝑠’) in all measurements, with few exceptions at low hemoglobin concentrations. The resulting coefficients match independently of the layer thickness. As a main second result, a high rate data set was generated which serves for further analysis - for example with machine learning approaches.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3528 ◽  
Author(s):  
Seyedalireza Khatibi ◽  
Azadeh Aghajanpour

For a safe drilling operation with the of minimum borehole instability challenges, building a mechanical earth model (MEM) has proven to be extremely valuable. However, the natural complexity of reservoirs along with the lack of reliable information leads to a poor prediction of geomechanical parameters. Shear wave velocity has many applications, such as in petrophysical and geophysical as well as geomechanical studies. However, occasionally, wells lack shear wave velocity (especially in old wells), and estimating this parameter using other well logs is the optimum solution. Generally, available empirical relationships are being used, while they can only describe similar formations and their validation needs calibration. In this study, machine learning approaches for shear sonic log prediction were used. The results were then compared with each other and the empirical Greenberg–Castagna method. Results showed that the artificial neural network has the highest accuracy of the predictions over the single and multiple linear regression models. This improvement is more highlighted in hydrocarbon-bearing intervals, which is considered as a limitation of the empirical or any linear method. In the next step, rock elastic properties and in-situ stresses were calculated. Afterwards, in-situ stresses were predicted and coupled with a failure criterion to yield safe mud weight windows for wells in the field. Predicted drilling events matched quite well with the observed drilling reports.


Sign in / Sign up

Export Citation Format

Share Document