scholarly journals Protein-Drug Binding Mode Prediction from the Apo-Protein Structure using a Molecular Dynamics-Based Pocket Generation Approach

2020 ◽  
Vol 118 (3) ◽  
pp. 338a
Author(s):  
Mitsugu Araki ◽  
Yasushi Okuno
2018 ◽  
Vol 39 (32) ◽  
pp. 2679-2689 ◽  
Author(s):  
Mitsugu Araki ◽  
Hiroaki Iwata ◽  
Biao Ma ◽  
Atsuto Fujita ◽  
Kei Terayama ◽  
...  

2019 ◽  
Vol 25 (31) ◽  
pp. 3339-3349 ◽  
Author(s):  
Indrani Bera ◽  
Pavan V. Payghan

Background: Traditional drug discovery is a lengthy process which involves a huge amount of resources. Modern-day drug discovers various multidisciplinary approaches amongst which, computational ligand and structure-based drug designing methods contribute significantly. Structure-based drug designing techniques require the knowledge of structural information of drug target and drug-target complexes. Proper understanding of drug-target binding requires the flexibility of both ligand and receptor to be incorporated. Molecular docking refers to the static picture of the drug-target complex(es). Molecular dynamics, on the other hand, introduces flexibility to understand the drug binding process. Objective: The aim of the present study is to provide a systematic review on the usage of molecular dynamics simulations to aid the process of structure-based drug design. Method: This review discussed findings from various research articles and review papers on the use of molecular dynamics in drug discovery. All efforts highlight the practical grounds for which molecular dynamics simulations are used in drug designing program. In summary, various aspects of the use of molecular dynamics simulations that underline the basis of studying drug-target complexes were thoroughly explained. Results: This review is the result of reviewing more than a hundred papers. It summarizes various problems that use molecular dynamics simulations. Conclusion: The findings of this review highlight how molecular dynamics simulations have been successfully implemented to study the structure-function details of specific drug-target complexes. It also identifies the key areas such as stability of drug-target complexes, ligand binding kinetics and identification of allosteric sites which have been elucidated using molecular dynamics simulations.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 686 ◽  
Author(s):  
Alexander Neumann ◽  
Viktor Engel ◽  
Andhika B. Mahardhika ◽  
Clara T. Schoeder ◽  
Vigneshwaran Namasivayam ◽  
...  

GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Justin Spiriti ◽  
Chung F. Wong

Most early-stage drug discovery projects focus on equilibrium binding affinity to the target alongside selectivity and other pharmaceutical properties. Since many approved drugs have nonequilibrium binding characteristics, there has been increasing interest in optimizing binding kinetics early in the drug discovery process. As focal adhesion kinase (FAK) is an important drug target, we examine whether steered molecular dynamics (SMD) can be useful for identifying drug candidates with the desired drug-binding kinetics. In simulating the dissociation of 14 ligands from FAK, we find an empirical power–law relationship between the simulated time needed for ligand unbinding and the experimental rate constant for dissociation, with a strong correlation depending on the SMD force used. To improve predictions, we further develop regression models connecting experimental dissociation rate with various structural and energetic quantities derived from the simulations. These models can be used to predict dissociation rates from FAK for related compounds.


Author(s):  
Chiara Luise ◽  
Dina Robaa ◽  
Wolfgang Sippl

AbstractSome of the main challenges faced in drug discovery are pocket flexibility and binding mode prediction. In this work, we explored the aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction by means of in silico approaches. We first investigated the Spindlin1 aromatic cage plasticity by analyzing the available crystal structures and through molecular dynamic simulations. Then we assessed the ability of rigid docking and flexible docking to rightly reproduce the binding mode of a known ligand into Spindlin1, as an example of a reader protein displaying flexibility in the binding pocket. The ability of induced fit docking was further probed to test if the right ligand binding mode could be obtained through flexible docking regardless of the initial protein conformation. Finally, the stability of generated docking poses was verified by molecular dynamic simulations. Accurate binding mode prediction was obtained showing that the herein reported approach is a highly promising combination of in silico methods able to rightly predict the binding mode of small molecule ligands in flexible binding pockets, such as those observed in some reader proteins.


Author(s):  
Jayashree Biswal ◽  
Prajisha Jayaprakash ◽  
Suresh Kumar Rayala ◽  
Ganesh Venkatraman ◽  
Raghu Rangasamy ◽  
...  

Aim: This study aims to develop and establish a computational model that can identify potent molecules for p21-activating kinase 1 (PAK1). Background: PAK1 is a well-established drug target that has been explored for various therapeutic interventions. Control of this protein requires an indispensable inhibitor to curb the structural changes and subsequent activation of signalling effectors responsible for the progression of diseases, such as cancer, inflammatory, viral, and neurological disorders. Objective: To establish a computational model that could identify active molecules which will further provide a platform for developing potential PAK1 inhibitors. Method: A congeneric series of 27 compounds was considered for this study with Ki (nm) covering a minimum of 3 log range. The compounds were developed based on a previously reported Group-I PAK inhibitor, namely G-5555. The 27 compounds were subjected to the SP and XP mode of docking, to understand the binding mode, its conformation and interaction patterns. To understand the relevance of biological activity from computational approaches, the compounds were scored against generated water maps to obtain WM/MM ΔG binding energy. Moreover, molecular dynamics analysis was performed for the highly active compound, to understand the conformational variability and complex’s stability. We then evaluate the predictable binding pose obtained from the docking studies. Result: From the SP and XP modes of docking, the common interaction pattern with the amino acid residues Arg299 (cation-π), Glu345 (Aromatic hydrogen bond), hinge region Leu347, salt bridges Asp393 and Asp407 was observed, among the congeneric compounds. The interaction pattern was compared with the co-crystal inhibitor FRAX597 of the PAK1 crystal structure (PDB id: 4EQC). The correlation with different docking parameters in the SP and XP modes was insignificant and thereby revealed that the SP and XP’s scoring functions could not predict the active compounds. This was due to the limitations in the docking methodology that neglected the receptor flexibility and desolvation parameters. Hence, to recognise the desolvation and explicit solvent effects, as well as to study the Structure-Activity Relationships (SARs) extensively, WaterMap (WM) calculations were performed on the congeneric compounds. Based on displaceable unfavourable hydration sites (HS) and their associated thermodynamic properties, the WM calculations facilitated to understand the significance of correlation in the folds of activity of highly (19 and 17), moderate (16 and 21) and less active (26 and 25) compounds. Furthermore, the scoring function from WaterMap, namely WM/MM, led to a significant R2 value of 0.72, due to a coupled conjunction with MM treatment and displaced unfavourable waters at the binding site. To check the “optimal binding conformation”, molecular dynamics simulation was carried out with the highly active compound 19 to explain the binding mode, stability, interactions, solvent accessible area, etc., which could support the predicted conformation with bioactive conformation. Conclusion: This study determined the best scoring function, established SARs and predicted active molecules through a computational model. This will contribute towards development of the most potent PAK1 inhibitors.


1998 ◽  
Vol 282 (5) ◽  
pp. 921-932 ◽  
Author(s):  
Willy Wriggers ◽  
Jay X. Tang ◽  
Toshifumi Azuma ◽  
Peter W. Marks ◽  
Paul A. Janmey

Sign in / Sign up

Export Citation Format

Share Document