MicroRNA-146a down-regulation correlates with neuroprotection and targets pro-apoptotic genes in cerebral ischemic injury in vitro

2016 ◽  
Vol 1648 ◽  
pp. 136-143 ◽  
Author(s):  
Xia Zhou ◽  
Shengyou Su ◽  
Shenghua Li ◽  
Xiaomin Pang ◽  
Chunyong Chen ◽  
...  
2014 ◽  
Vol 39 (7) ◽  
pp. 1279-1291 ◽  
Author(s):  
Peng Wang ◽  
Jia Liang ◽  
Yun Li ◽  
Jiefei Li ◽  
Xuan Yang ◽  
...  

2020 ◽  
Vol 319 (2) ◽  
pp. C381-C391
Author(s):  
Hang Xue ◽  
Jianpeng Liu ◽  
Lin Shi ◽  
Hongfa Yang

Several microRNAs (miRNAs or miRs) regulate cerebral ischemic injury outcomes; however, little is known about the role of miR-539-5p during cerebral ischemic injury or the postischemic state. Cerebral ischemic injury was modeled in vitro by exposing human cortical neurons to oxygen-glucose deprivation (OGD) and in vivo by occluding the middle cerebral artery (MCAO) in a rat model. The effects of miR-539-5p, histone deacetylase 1 (HDAC1), and early growth response 2 (EGR2) on cerebral ischemia were investigated using gain- and loss-of-function experiments. We identified changes in miR-539-5p, HDAC1, EGR2, and phosphorylated c-Jun NH2-terminal kinase (JNK). The interaction among miR-539-5p, HDAC1, and EGR2 was determined by dual luciferase reporter gene assay, chromatin immunoprecipitation, and coimmunoprecipitation. We also investigated the effects on cell viability and apoptosis and changes in inflammatory cytokine expression and spatial memory on MCAO rats. miR-539-5p and EGR2 were poorly expressed, while HDAC1 was highly expressed in OGD-treated HCN-2 cells. miR-539-5p targeted HDAC1, while HDAC1 prevented acetylation of EGR2 resulting in its downregulation and subsequent activation of the JNK pathway. Overexpression of miR-539-5p or EGR2 or silencing HDAC1 improved viability and reduced apoptosis of OGD-treated HCN-2 cells in vitro. Furthermore, overexpression of miR-539-5p improved spatial memory, while decreasing cell apoptosis and inflammation in MCAO rats. Collectively, these data suggest that miR-539-5p targets HDAC1 to upregulate EGR2, thus blocking the JNK signaling pathway, by which cerebral ischemic injury is alleviated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Zhang ◽  
Junying Liu ◽  
Mi Su ◽  
Xin Wang ◽  
Chenchen Xie

Abstract Background Cerebral ischemia-reperfusion (I/R) injury, the most common form of stroke, has high mortality and often brings persistent and serious brain dysfunction among survivors. Administration of adipose-derived mesenchymal stem cells (ASCs) has been suggested to alleviate the I/R brain injury, but the mechanism remains uncharacterized. Here, we aimed at investigating the mechanism of ASCs and their extracellular vesicles (EVs) in the repair of or protection from I/R injury. Methods We established the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/RP) neuron model. ASCs or ASC-derived EVs (ASC-EVs) were co-cultured with neurons. RT-qPCR and Western blot analyses determined microRNA (miRNA)-22-3p, BMP2, BMF, and KDM6B expression in neurons upon treatment with ASC-EVs. Bioinformatics analysis predicted the binding between miR-22-3p and KDM6B. Using gain- and loss-of-function methods, we tested the impact of these molecules on I/R injury in vivo and in vitro. Results Treatment with ASCs and ASC-derived EVs significantly alleviated the I/R brain injury in vivo, elevated neuron viability in vitro, and decreased apoptosis. Interestingly, miR-22-3p was upregulated in ASC-EVs, and treatment with EV-miR-22-3p inhibitor led to increased apoptosis and decreased neuronal. Of note, miR-22-3p bound to and inhibited KDM6B, as demonstrated by dual-luciferase reporter gene assay and Western blot assay. Overexpression of KDM6B enhanced apoptosis of neurons in the OGD/RP model, and KDM6B bound to BMB2 and promoted its expression by binding to BMP2. Silencing of BMF reduced infarct volume and apoptosis in the stroke model. Conclusion Results support a conclusion that ASC-EV-derived miR-22-3p could alleviate brain ischemic injury by inhibiting KDM6B-mediated effects on the BMP2/BMF axis. These findings compelling indicate a novel treatment strategy for cerebral ischemic injury.


2017 ◽  
Vol 43 (1) ◽  
pp. 182-194 ◽  
Author(s):  
Dong Guo ◽  
Ji Ma ◽  
Lei Yan ◽  
Tengfei Li ◽  
Zhiguo Li ◽  
...  

Background/Aims: LncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was reported to be highly expressed in an in vitro mimic of ischemic stroke conditions. However, the exact biological role of MALAT1 and its underlying mechanism in ischemic stroke remain to be elucidated. Methods: The roles of MALAT1 and miR-30a on cell death and infarct volume and autophagy were evaluated in experimental ischemic stroke. The relationships between miR-30a and MALAT1, Beclin1 were confirmed by luciferase reporter assay. The autophagy inhibitor 3-methyadenine (3-MA) was used to examine the impact of autophagy on ischemic injury. Results: We found that MALAT1, along with the levels of conversion from autophagy-related protein microtubule-associated protein light chain 3-I (LC3-I) to LC3-phosphatidylethanolamine conjugate (LC3-II), as well as Beclin1 were up-regulated and miR-30a was down-regulated in cerebral cortex neurons after oxygen-glucose deprivation (OGD) and mouse brain cortex after middle cerebral artery occlusion-reperfusion (MCAO). Down-regulation of MALAT1 suppressed ischemic injury and autophagy in vitro and in vivo. Furthermore, MALAT1 may serve as a molecular sponge for miR-30a and negatively regulate its expression. In addition, MALAT1 overturned the inhibitory effect of miR-30a on ischemic injury and autophagy in vitro and in vivo, which might be involved in the derepression of Beclin1, a direct target of miR-30a. Mechanistic analyses further revealed that autophagy inhibitor 3-methyadenine (3-MA) markedly suppressed OGD-induced neuronal cell death and MCAO-induced ischemic brain infarction. Conclusion: Taken together, our study first revealed that down-regulation of MALAT1 attenuated neuronal cell death through suppressing Beclin1-dependent autophagy by regulating miR-30a expression in cerebral ischemic stroke. Besides, our study demonstrated a novel lncRNA-miRNA-mRNA regulatory network that is MALAT1-miR-30a-Beclin1 in ischemic stroke, contributing to a better understanding the pathogenesis and progression of ischemic stroke.


2012 ◽  
Vol 1488 ◽  
pp. 81-91 ◽  
Author(s):  
Qiqiang Tang ◽  
Ruodong Han ◽  
Han Xiao ◽  
Jilong Shen ◽  
Qingli Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document