scholarly journals Overexpressed microRNA-539-5p inhibits inflammatory response of neurons to impede the progression of cerebral ischemic injury by histone deacetylase 1

2020 ◽  
Vol 319 (2) ◽  
pp. C381-C391
Author(s):  
Hang Xue ◽  
Jianpeng Liu ◽  
Lin Shi ◽  
Hongfa Yang

Several microRNAs (miRNAs or miRs) regulate cerebral ischemic injury outcomes; however, little is known about the role of miR-539-5p during cerebral ischemic injury or the postischemic state. Cerebral ischemic injury was modeled in vitro by exposing human cortical neurons to oxygen-glucose deprivation (OGD) and in vivo by occluding the middle cerebral artery (MCAO) in a rat model. The effects of miR-539-5p, histone deacetylase 1 (HDAC1), and early growth response 2 (EGR2) on cerebral ischemia were investigated using gain- and loss-of-function experiments. We identified changes in miR-539-5p, HDAC1, EGR2, and phosphorylated c-Jun NH2-terminal kinase (JNK). The interaction among miR-539-5p, HDAC1, and EGR2 was determined by dual luciferase reporter gene assay, chromatin immunoprecipitation, and coimmunoprecipitation. We also investigated the effects on cell viability and apoptosis and changes in inflammatory cytokine expression and spatial memory on MCAO rats. miR-539-5p and EGR2 were poorly expressed, while HDAC1 was highly expressed in OGD-treated HCN-2 cells. miR-539-5p targeted HDAC1, while HDAC1 prevented acetylation of EGR2 resulting in its downregulation and subsequent activation of the JNK pathway. Overexpression of miR-539-5p or EGR2 or silencing HDAC1 improved viability and reduced apoptosis of OGD-treated HCN-2 cells in vitro. Furthermore, overexpression of miR-539-5p improved spatial memory, while decreasing cell apoptosis and inflammation in MCAO rats. Collectively, these data suggest that miR-539-5p targets HDAC1 to upregulate EGR2, thus blocking the JNK signaling pathway, by which cerebral ischemic injury is alleviated.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Zhang ◽  
Junying Liu ◽  
Mi Su ◽  
Xin Wang ◽  
Chenchen Xie

Abstract Background Cerebral ischemia-reperfusion (I/R) injury, the most common form of stroke, has high mortality and often brings persistent and serious brain dysfunction among survivors. Administration of adipose-derived mesenchymal stem cells (ASCs) has been suggested to alleviate the I/R brain injury, but the mechanism remains uncharacterized. Here, we aimed at investigating the mechanism of ASCs and their extracellular vesicles (EVs) in the repair of or protection from I/R injury. Methods We established the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/RP) neuron model. ASCs or ASC-derived EVs (ASC-EVs) were co-cultured with neurons. RT-qPCR and Western blot analyses determined microRNA (miRNA)-22-3p, BMP2, BMF, and KDM6B expression in neurons upon treatment with ASC-EVs. Bioinformatics analysis predicted the binding between miR-22-3p and KDM6B. Using gain- and loss-of-function methods, we tested the impact of these molecules on I/R injury in vivo and in vitro. Results Treatment with ASCs and ASC-derived EVs significantly alleviated the I/R brain injury in vivo, elevated neuron viability in vitro, and decreased apoptosis. Interestingly, miR-22-3p was upregulated in ASC-EVs, and treatment with EV-miR-22-3p inhibitor led to increased apoptosis and decreased neuronal. Of note, miR-22-3p bound to and inhibited KDM6B, as demonstrated by dual-luciferase reporter gene assay and Western blot assay. Overexpression of KDM6B enhanced apoptosis of neurons in the OGD/RP model, and KDM6B bound to BMB2 and promoted its expression by binding to BMP2. Silencing of BMF reduced infarct volume and apoptosis in the stroke model. Conclusion Results support a conclusion that ASC-EV-derived miR-22-3p could alleviate brain ischemic injury by inhibiting KDM6B-mediated effects on the BMP2/BMF axis. These findings compelling indicate a novel treatment strategy for cerebral ischemic injury.


2012 ◽  
Vol 287 (42) ◽  
pp. 35444-35453 ◽  
Author(s):  
Farah H. Bardai ◽  
Valerie Price ◽  
Marcus Zaayman ◽  
Lulu Wang ◽  
Santosh R. D'Mello

Both neuroprotective and neurotoxic roles have previously been described for histone deacetylase-1 (HDAC1). Here we report that HDAC1 expression is elevated in vulnerable brain regions of two mouse models of neurodegeneration, the R6/2 model of Huntington disease and the Ca2+/calmodulin-dependent protein kinase (CaMK)/p25 double-transgenic model of tauopathic degeneration, suggesting a role in promoting neuronal death. Indeed, elevating HDAC1 expression by ectopic expression promotes the death of otherwise healthy cerebellar granule neurons and cortical neurons in culture. The neurotoxic effect of HDAC1 requires interaction and cooperation with HDAC3, which has previously been shown to selectively induce the death of neurons. HDAC1-HDAC3 interaction is greatly elevated under conditions of neurodegeneration both in vitro and in vivo. Furthermore, the knockdown of HDAC3 suppresses HDAC1-induced neurotoxicity, and the knockdown of HDAC1 suppresses HDAC3 neurotoxicity. As described previously for HDAC3, the neurotoxic effect of HDAC1 is inhibited by treatment with IGF-1, the expression of Akt, or the inhibition of glycogen synthase kinase 3β (GSK3β). In addition to HDAC3, HDAC1 has been shown to interact with histone deacetylase-related protein (HDRP), a truncated form of HDAC9, whose expression is down-regulated during neuronal death. In contrast to HDAC3, the interaction between HDRP and HDAC1 protects neurons from death, an effect involving acquisition of the deacetylase activity of HDAC1 by HDRP. We find that elevated HDRP inhibits HDAC1-HDAC3 interaction and prevents the neurotoxic effect of either of these two proteins. Together, our results suggest that HDAC1 is a molecular switch between neuronal survival and death. Its interaction with HDRP promotes neuronal survival, whereas interaction with HDAC3 results in neuronal death.


2007 ◽  
Vol 27 (10) ◽  
pp. 3578-3588 ◽  
Author(s):  
Bong Gu Kang ◽  
June Ho Shin ◽  
Jae Kyu Yi ◽  
Ho Chul Kang ◽  
Jong Joo Lee ◽  
...  

ABSTRACT A transcription corepressor, MAT1-mediated transcriptional repressor (MMTR), was found in mouse embryonic stem cell lines. MMTR orthologs (DMAP1) are found in a wide variety of life forms from yeasts to humans. MMTR down-regulation in differentiating mouse embryonic stem cells in vitro resulted in activation of many unrelated genes, suggesting its role as a general transcriptional repressor. In luciferase reporter assays, the transcriptional repression activity resided at amino acids 221 to 468. Histone deacetylase 1 (HDAC1) interacts with MMTR both in vitro and in vivo and also interacts with MMTR in the nucleus. Interestingly, MMTR activity was only partially rescued by competition with dominant-negative HDAC1(H141A) or by treatment with an HDAC inhibitor, trichostatin A (TSA). To identify the protein responsible for HDAC1-independent MMTR activity, we performed a yeast two-hybrid screen with the full-length MMTR coding sequence as bait and found MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase which constitutes a subcomplex of TFIIH. The coiled-coil domain in the middle of MAT1 was confirmed to interact with the C-terminal half of MMTR, and the MMTR-mediated transcriptional repression activity was completely restored by MAT1 in the presence of TSA. Moreover, intact MMTR was required to inhibit phosphorylation of the C-terminal domain in the RNA polymerase II largest subunit by TFIIH kinase in vitro. Taken together, these data strongly suggest that MMTR is part of the basic cellular machinery for a wide range of transcriptional regulation via interaction with TFIIH and HDAC.


2016 ◽  
Vol 1648 ◽  
pp. 136-143 ◽  
Author(s):  
Xia Zhou ◽  
Shengyou Su ◽  
Shenghua Li ◽  
Xiaomin Pang ◽  
Chunyong Chen ◽  
...  

2012 ◽  
Vol 1488 ◽  
pp. 81-91 ◽  
Author(s):  
Qiqiang Tang ◽  
Ruodong Han ◽  
Han Xiao ◽  
Jilong Shen ◽  
Qingli Luo ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 715-723
Author(s):  
Natarajan Nandakumar ◽  
Pushparathinam Gopinath ◽  
Jacob Gopas ◽  
Kannoth M. Muraleedharan

Background: The authors investigated the NF-κB inhibitory role of three Benzisothiazolone (BIT) derivatives (1, 2 and 3) in Hodgkin’s Lymphoma cells (L428) which constitutively express activated NF-κB. All three compounds showed dose-dependent NF-κB inhibition (78.3, 70.7 and 34.6%) in the luciferase reporter gene assay and were found cytotoxic at IC50 values of 3.3μg/ml, 4.35μg/ml and 13.8μg/ml, respectively by the XTT assay. BIT 1and BIT 2 (but not BIT 3) suppressed both NF-κB subunits p50 and p65 in cytoplasmic and nuclear extracts in a concentration-dependent manner. Furthermore, BIT 1 showed a moderate synergistic effect with the standard chemotherapy drugs etoposide and doxorubicin, whereas BIT 2 and 3 showed a moderate additive effect to antagonistic effect. Cisplatin exhibited an antagonist effect on all the compounds tested under various concentrations, except in the case of 1.56μg/ml of BIT 3 with 0.156μg/ml of cisplatin. The compounds also inhibited the migration of adherent human lung adenocarcinoma cells (A549) in vitro. We conclude that especially BIT 1 and BIT 2 have in vitro anti-inflammatory and anti-cancer activities, which can be further investigated for future potential therapeutic use. Methods: Inspired by the electrophilic sulfur in Nuphar alkaloids, monomeric and dimeric benzisothiazolones were synthesized from dithiodibenzoic acid and their NF-κB inhibitory role was explored. NF-κB inhibition and cytotoxicity of the synthesized derivatives were studied using luciferase reporter gene assay and XTTassay. Immunocytochemistry studies were performed using L428 cells. Cell migration assay was conducted using the A549 cell line. L428 cells were used to conduct combination studies and the results were plotted using CompuSyn software. Results: Benzisothiazolone derivatives exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. Potent compounds showed suppression of both NF-κB subunits p50 and p65 in a concentrationdependent manner, both in cytoplasmic and nuclear extracts. Combination studies suggest that benzisothiazolone derivatives possess a synergistic effect with etoposide and doxorubicin. Furthermore, the compounds also inhibited the migration of A549 cells. Conclusion: Benzisothiazolones bearing one or two electrophilic sulfur atoms as part of the heterocyclic framework exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. In addition, these derivatives also exhibited a synergistic effect with etoposide and doxorubicin along with the ability to inhibit the migration of A549 cells. Our study suggests that BIT-based new chemical entities could lead to potential anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document