LncRNA-MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1

2021 ◽  
Vol 1763 ◽  
pp. 147436
Author(s):  
Xiaqing Guo ◽  
Yabo Wang ◽  
Donglin Zheng ◽  
Xiangshu Cheng ◽  
Yuhua Sun
Keyword(s):  
2017 ◽  
Vol 39 (6) ◽  
pp. 552-558 ◽  
Author(s):  
Shujuan Li ◽  
Qingqing Dai ◽  
Jinling Yu ◽  
Ting Liu ◽  
Shuiqiao Liu ◽  
...  

2013 ◽  
Vol 33 (8) ◽  
pp. 1197-1206 ◽  
Author(s):  
Savita Khanna ◽  
Cameron Rink ◽  
Reza Ghoorkhanian ◽  
Surya Gnyawali ◽  
Mallory Heigel ◽  
...  

Glutathione depletion and 12-lipoxygenase-dependent metabolism of arachidonic acid are known to be implicated in neurodegeneration associated with acute ischemic stroke. The objective of this study was to investigate the significance of miR-29 in neurodegeneration associated with acute ischemic stroke. Neural cell death caused by arachidonic acid insult of glutathione-deficient cells was preceded by a 12-lipoxygenase-dependent loss of miR-29b. Delivery of miR-29b mimic to blunt such loss was neuroprotective. miR-29b inhibition potentiated such neural cell death. 12-Lipoxygenase knockdown and inhibitors attenuated the loss of miR-29b in challenged cells. In vivo, stroke caused by middle-cerebral artery occlusion was followed by higher 12-lipoxygenase activity and loss of miR-29b as detected in laser-captured infarct site tissue. 12-Lipoxygenase knockout mice demonstrated protection against such miR loss. miR-29b gene delivery markedly attenuated stroke-induced brain lesion. Oral supplementation of α-tocotrienol, a vitamin E 12-lipoxygenase inhibitor, rescued stroke-induced loss of miR-29b and minimized lesion size. This work provides the first evidence demonstrating that loss of miR-29b at the infarct site is a key contributor to stroke lesion. Such loss is contributed by activity of the 12-lipoxygenase pathway providing maiden evidence linking arachidonic acid metabolism to miR-dependent mechanisms in stroke.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Emily W Baker ◽  
Simon R Platt ◽  
Shannon P Holmes ◽  
Liya Wang ◽  
Vivian W Lau ◽  
...  

Studies in rodents have provided evidence that induced pluripotent stem cell derived neural stem cells (iNSCs) have a multifunctional role in stroke recovery. iNSCs mitigate tissue loss due to secondary injury, promote tissue recovery through angiogenesis, and differentiate into mature neural cell types resulting in recovery and replacement of lost and damaged brain tissue. However, many stroke therapies developed in the rodent have failed in clinical trials, suggesting that iNSC therapy should be tested in a more translatable large animal model such as the pig. The objective of this study was to assess the ability of iNSCs to differentiate into mature neural cell types and characterize the effects of iNSCs on brain tissue recovery utilizing non-invasive magnetic resonance imaging (MRI) and spectroscopy approaches in a pig model. Eight male landrace pigs underwent middle cerebral artery occlusion stroke surgery. After 5 days, 4 pigs received iNSC intraparenchymal injections and 4 pigs received vehicle only injections. Pigs underwent MRI assessment at 24 hrs post-stroke and 1, 4, and 12 wks post-injection, and brain tissues were collected 12 wks post-injection. At 12 wks post-injection, iNSC treated pigs showed significant improvement in white matter integrity with recovery of fractional anisotropy being 4-fold higher in treated pigs relative to non-treated pigs. Perfusion weighted imaging demonstrated significant improvement in cerebral blood volume (13%), time to peak (36%), and mean transit time (41%) in treated pigs at 12 wks post-injection vs. non-treated pigs. In addition, treated pigs showed significant improvement in neurometabolites NAA, Cr, and Cho at 12 wks post-injection relative to non-treated pigs. Gene expression analysis established significant increases in neurotrophic and angiogenic factors including BDNF and ANG1, respectively, in brain tissue of treated pigs vs. non-treated pigs suggesting potential modes of action. iNSCs were located in the brain parenchyma 12 wks post-injection, and the majority were positive for the mature neuronal marker NeuN. These results demonstrated that iNSCs are capable of neuronal differentiation and long term integration while promoting tissue recovery in a preclinical pig ischemic stroke model.


Sign in / Sign up

Export Citation Format

Share Document