Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

2014 ◽  
Vol 7 (1) ◽  
pp. 122-129 ◽  
Author(s):  
Charlotte Rosso ◽  
R. Valabregue ◽  
C. Arbizu ◽  
S. Ferrieux ◽  
P. Vargas ◽  
...  
2012 ◽  
Vol 117 (5) ◽  
pp. 844-850 ◽  
Author(s):  
Juan Martino ◽  
Enrique Marco de Lucas ◽  
Francisco Javier Ibáñez-Plágaro ◽  
José Manuel Valle-Folgueral ◽  
Alfonso Vázquez-Barquero

Foix-Chavany-Marie syndrome (FCMS) is a rare type of suprabulbar palsy characterized by an automaticvoluntary dissociation of the orofacial musculature. Here, the authors report an original case of FCMS that occurred intraoperatively while resecting the pars opercularis of the inferior frontal gyrus. This 25-year-old right-handed man with an incidentally diagnosed right frontotemporoinsular tumor underwent surgery using an asleep-awake-asleep technique with direct cortical and subcortical electrical stimulation and a transopercular approach to the insula. While resecting the anterior part of the pars opercularis the patient suffered sudden anarthria and bilateral facial weakness. He was unable to speak or show his teeth on command, but he was able to voluntarily move his upper and lower limbs. This syndrome lasted for 8 days. Postoperative diffusion tensor imaging tractography revealed that connections of the pars opercularis of the right inferior frontal gyrus with the frontal aslant tract (FAT) and arcuate fasciculus (AF) were damaged. This case supplies evidence for localizing the structural substrate of FCMS. It was possible, for the first time in the literature, to accurately correlate the occurrence of FCMS to the resection of connections between the FAT and AF, and the right pars opercularis of the inferior frontal gyrus. The FAT has been recently described, but it may be an important connection to mediate supplementary motor area control of orofacial movement. The present case also contributes to our knowledge of complication avoidance in operculoinsular surgery. A transopercular approach to insuloopercular gliomas can generate FCMS, especially in cases of previous contralateral lesions. The prognosis is favorable, but the patient should be informed of this particular hazard, and the surgeon should anticipate the surgical strategy in case the syndrome occurs intraoperatively in an awake patient.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
José A. Pineda-Pardo ◽  
Ignacio Obeso ◽  
Pasqualina Guida ◽  
Michele Dileone ◽  
Bryan A. Strange ◽  
...  

Abstract Focal application of a strong static magnetic field over the human scalp induces measurable local changes in brain function. Whether it also induces distant effects across the brain and how these local and distant effects collectively affect motor behavior remains unclear. Here we applied transcranial static magnetic field stimulation (tSMS) over the supplementary motor area (SMA) in healthy subjects. At a behavioral level, tSMS increased the time to initiate movement while decreasing errors in choice reaction-time tasks. At a functional level, tSMS increased SMA resting-state fMRI activity and bilateral functional connectivity between the SMA and both the paracentral lobule and the lateral frontotemporal cortex, including the inferior frontal gyrus. These results suggest that tSMS over the SMA can induce behavioral aftereffects associated with modulation of both local and distant functionally-connected cortical circuits involved in the control of speed-accuracy tradeoffs, thus offering a promising protocol for cognitive and clinical research.


2015 ◽  
Vol 113 (3) ◽  
pp. 780-785 ◽  
Author(s):  
Michael J. Carter ◽  
Dana Maslovat ◽  
Anthony N. Carlsen

Coordinated bimanual oscillatory movements often involve one of two intrinsically stable phasing relationships characterized as in-phase (symmetrical) or antiphase (asymmetrical). The in-phase mode is typically more stable than antiphase, and if movement frequency is increasing during antiphase movements, a spontaneous transition to the in-phase pattern occurs. There is converging neurophysiological evidence that the supplementary motor area (SMA) plays a critical role in the successful performance of these patterns, especially during antiphase movements. We investigated whether modulating the excitability of the SMA via offline transcranial direct current stimulation (tDCS) would delay the onset of anti-to-in-phase transitions. Participants completed two sessions (separated by ∼48 h), each consisting of a pre- and post-tDCS block in which they performed metronome-paced trials of rhythmic in- and antiphase bimanual supination-pronation movements as target oscillation frequency was systematically increased. Anodal or cathodal tDCS was applied over the SMA between the pre- and post-tDCS blocks in each session. Following anodal tDCS, participants performed the antiphase pattern with increased accuracy and stability and were able to maintain the coordination pattern at a higher oscillation frequency. Antiphase performance was unchanged following cathodal tDCS, and neither tDCS polarity affected the in-phase mode. Our findings suggest increased SMA excitability induced by anodal tDCS can improve antiphase performance and adds to the accumulating evidence of the pivotal role of the SMA in interlimb coordination.


2019 ◽  
Author(s):  
Matthew Heard ◽  
Yune S. Lee

AbstractA growing body of evidence has highlighted behavioral connections between musical rhythm and linguistic syntax, suggesting that these may be mediated by common neural resources. Here, we performed a quantitative meta-analysis of neuroimaging studies using activation likelihood estimate (ALE) to localize the shared neural structures engaged in a representative set of musical rhythm (rhythm, beat, and meter) and linguistic syntax (merge movement, and reanalysis). Rhythm engaged a bilateral sensorimotor network throughout the brain consisting of the inferior frontal gyri, supplementary motor area, superior temporal gyri/temporoparietal junction, insula, the intraparietal lobule, and putamen. By contrast, syntax mostly recruited the left sensorimotor network including the inferior frontal gyrus, posterior superior temporal gyrus, premotor cortex, and supplementary motor area. Intersections between rhythm and syntax maps yielded overlapping regions in the left inferior frontal gyrus, left supplementary motor area, and bilateral insula—neural substrates involved in temporal hierarchy processing and predictive coding. Together, this is the first neuroimaging meta-analysis providing detailed anatomical overlap of sensorimotor regions recruited for musical rhythm and linguistic syntax.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Francesca Fiori ◽  
Emilio Chiappini ◽  
Marco Soriano ◽  
Riccardo Paracampo ◽  
Vincenzo Romei ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weijia Gao ◽  
Dong Cui ◽  
Qing Jiao ◽  
Linyan Su ◽  
Guangming Lu ◽  
...  

Abstract Objective Psychotic symptoms are quite common in patients with pediatric bipolar disorder (PBD) and may affect the symptom severity and prognosis of PBD. However, the potential mechanisms are less well elucidated until now. Thus, the purpose of this study was to investigate the brain functional differences between PBD patients with and without psychotic symptoms. Method A total of 71 individuals including: 27 psychotic PBD (P-PBD), 25 nonpsychotic PBD (NP-PBD), and 19 healthy controls were recruited in the present study. Each subject underwent 3.0 Tesla functional magnetic resonance imaging scan. Four-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) was employed to detect the local brain activity changes. Analyses of variance (ANOVA) were used to reveal brain regions with significant differences among three groups groups of individuals, and inter-group comparisons were assessed using post hoc tests. Results The ANOVA obtained significant among-group FOCA differences in the left triangular inferior frontal gyrus, left supplementary motor area, left precentral gyrus, right postcentral gyrus, right superior occipital gyrus, and right superior frontal gyrus. Compared with the control group, the P-PBD group showed decreased FOCA in the left supplementary motor area and bilateral superior frontal gyrus and showed increased FOCA in the left triangular inferior frontal gyrus. In contrast, the NP-PBD group exhibited decreased FOCA in the right superior occipital gyrus and right postcentral gyrus and showed increased FOCA in the left orbital inferior frontal gyrus. Compared to the NP-PBD group, the P-PBD group showed decreased FOCA in the right superior frontal gyrus. Conclusion The present findings demonstrated that the two groups of PBD patients exhibited segregated brain functional patterns, providing empirical evidence for the biological basis of different clinical outcomes between PBD patients with and without psychotic symptoms.


Sign in / Sign up

Export Citation Format

Share Document