First intergeneric hybrids within the tribe Anthemideae Cass. III. Chrysanthemum indicum L. Des Moul. × Opisthopappus taihangensis (Ling) Shih

2012 ◽  
Vol 43 ◽  
pp. 87-92 ◽  
Author(s):  
Fangping Tang ◽  
Haibin Wang ◽  
Sumei Chen ◽  
Fadi Chen ◽  
Nianjun Teng ◽  
...  
2011 ◽  
Vol 1 (9) ◽  
pp. 7-10
Author(s):  
M.Jerome Rozario ◽  
◽  
Dr.A.John Merina ◽  
Dr.V.Srinivasana Dr.V.Srinivasana

2009 ◽  
Vol 38 (10) ◽  
pp. 1406-1413 ◽  
Author(s):  
Sang-Hoon Lee ◽  
In-Guk Hwang ◽  
Ha-Kyoo Lee ◽  
So-Lim Shin ◽  
Young-Deug Chang ◽  
...  

2010 ◽  
Vol 7 (12) ◽  
pp. 2951-2962 ◽  
Author(s):  
Cong Zhang ◽  
Min-Jian Qin ◽  
Pan Shu ◽  
Jun-Li Hong ◽  
Lin Lü ◽  
...  

Genome ◽  
1990 ◽  
Vol 33 (6) ◽  
pp. 845-849 ◽  
Author(s):  
Richard R.-C. Wang

Intergeneric hybrids were synthesized for the first time from the diploid crosses Thinopyrum elongatum (JeJe) × Psathyrostachys juncea (NjNj), T. elongatum × P. fragilis (NfNf), T. bessarabicum (JbJb) × P. huashanica (NhNh), and T. bessarabicum × P. juncea, as well as from a cross between the amphidiploid of T. bessarabicum × T. elongatum (JbJbJeJe) and P. juncea. Spikes of these hybrids are morphologically intermediate between those of the parental species. Double spikelets occurred occasionally at central nodes of the spikes. Glaucous blue leaves appeared in the F1 only in the cross T. bessarabicum × P. huashanica, suggesting that the gene(s) for glaucous blue leaves in T. bessarabicum is (are) recessive to a gene(s) for green leaves in P. juncea but is (are) dominant to that for yellowish green leaves in P. huashanica. Meiotic pairing at metaphase I in these diploid (JN) and triploid (JJN) hybrids revealed a very low level of homology between the basic J and N genome. Therefore, the J and N genomes are nonhomologous and justifiably represented by different genome symbols. The triploid hybrids exhibited a pattern of chromosome associations that substantiated the earlier conclusion that the genomes in T. bessarabicum and T. elongatum are two versions of a basic genome (J). These hybrids will be useful in genome analysis, forming new Leymus species with the J and N genomes and broadening the diversity in the genus Pascopyrum with the SHJN genomes.Key words: hybrid, Thinopyrum, Psathyrostachys, genome.


Genome ◽  
2008 ◽  
Vol 51 (11) ◽  
pp. 897-904 ◽  
Author(s):  
N.-S. Kim ◽  
G. Fedak ◽  
F. Han ◽  
W. Cao

Wild species in the Triticeae tribe are very valuable resources for agronomic improvement in cereal crop species. Intergeneric hybrids were produced between several barley cultivars and perennial species in the genera Elymus , Thinopyrum , and Pseudoroegneria . Caryopsis formation and subsequent plantlet regeneration from embryo culture were variable depending on the hybrid combinations. Chromosome numbers and hybrid identity were confirmed by GISH analysis on the somatic cells of the hybrids. While the hybrids showed very robust vegetative growth and exceeded the parental spikes in size, their floral morphologies resembled that of the wild species. Meiotic chromosome analysis revealed that the bivalent formation frequency per cell ranged from 0.06 in Hordeum vulgare ‘Betzes’ × Elymus curvatus to 3.0 in Elymus humidus  × H. vulgare ‘Manley’. By GISH analysis on the meiocytes of the hybrid E. humidus × ‘Manley’, the frequency of autosyndetic bivalents exceeded the allosyndetic bivalent formation, which gave an insight into the genome constitution of E. humidus as an autoallohexploid species. Regardless of the low allosyndetic chromosome pairing between barley and E. humidus, this combination may be useful for further input, since E. humidus is known to carry many valuable genes for biotic and abiotic stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document