Empirical models on urban surface emissivity retrieval based on different spectral response functions: A field study

2021 ◽  
Vol 197 ◽  
pp. 107882
Author(s):  
Xue Zhong ◽  
Lihua Zhao ◽  
Jie Wang ◽  
Haichao Zheng ◽  
Junru Yan ◽  
...  
2019 ◽  
Vol 11 (14) ◽  
pp. 1649 ◽  
Author(s):  
María Ángeles Obregón ◽  
Gonçalo Rodrigues ◽  
Maria Joao Costa ◽  
Miguel Potes ◽  
Ana Maria Silva

This study presents a validation of aerosol optical thickness (AOT) and integrated water vapour (IWV) products provided by the European Space Agency (ESA) from multi-spectral imager (MSI) measurements on board the Sentinel-2 satellite (ESA-L2A). For that purpose, data from 94 Aerosol Robotic Network (AERONET) stations over Europe and adjacent regions, covering a wide geographical region with a variety of climate and environmental conditions and during the period between March 2017 and December 2018 have been used. The comparison between ESA-L2A and AERONET shows a better agreement for IWV than the AOT, with normalized root mean square errors (NRMSE) of 5.33% and 9.04%, respectively. This conclusion is also reflected in the values of R2, which are 0.99 and 0.65 for IWV and AOT, respectively. The study period was divided into two sub-periods, before and after 15 January 2018, when the Sentinel-2A spectral response functions of bands 1 and 2 (centered at 443 and 492 nm) were updated by ESA, in order to investigate if the lack of agreement in the AOT values was connected to the use of incorrect spectral response functions. The comparison of ESA-L2A AOT with AERONET measurements showed a better agreement for the second sub-period, with root mean square error (RMSE) values of 0.08 in comparison with 0.14 in the first sub-period. This same conclusion was attained considering mean bias error (MBE) values that decreased from 0.09 to 0.01. The ESA-L2A AOT values estimated with the new spectral response functions were closer to the correspondent reference AERONET values than the ones obtained using the previous spectral response functions. IWV was not affected by this change since the retrieval algorithm does not use bands 1 and 2 of Sentinel-2. Additionally, an analysis of potential uncertainty sources to several factors affecting the AOT comparison is presented and recommendations regarding the use of ESA-L2A AOT dataset are given.


Author(s):  
Lulu Huang ◽  
Andrew Shabaev ◽  
Samuel G. Lambrakos ◽  
Noam Bernstein ◽  
Verne L. Jacobs ◽  
...  

We present calculations of ground state resonance structure associated with the high explosives β-HMX using density functional theory (DFT), which is for the construction of parameterized dielectric response functions for excitation by electromagnetic waves at compatible frequencies. These dielectric functions provide for different types of analyses concerning the dielectric response of explosives. In particular, these dielectric response functions provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory based calculations. With respect to qualitative analysis, these spectra provide for the molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground state resonance structure presented here.


2010 ◽  
Vol 27 (8) ◽  
pp. 1331-1342 ◽  
Author(s):  
M. M. Schreier ◽  
B. H. Kahn ◽  
A. Eldering ◽  
D. A. Elliott ◽  
E. Fishbein ◽  
...  

Abstract The combination of multiple satellite instruments on a pixel-by-pixel basis is a difficult task, even for instruments collocated in space and time, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) on board the Earth Observing System (EOS) Aqua. Toward the goal of an improved collocation methodology, the channel- and scan angle–dependent spatial response functions of AIRS that were obtained from prelaunch measurements and calculated impacts from scan geometry are shown within the context of radiance comparisons. The AIRS spatial response functions are used to improve the averaging of MODIS radiances to the AIRS footprint, and the variability of brightness temperature differences (ΔTb) between MODIS and AIRS are quantified on a channel-by-channel basis. To test possible connections between ΔTb and the derived level 2 (L2) datasets, cloud characteristics derived from MODIS are used to highlight correlations between these quantities and ΔTb, especially for ice clouds in H2O and CO2 bands. Furthermore, correlations are quantified for temperature lapse rate (dT/dp) and the magnitude of water vapor mixing ratio (q) obtained from AIRS L2 retrievals. Larger values of dT/dp and q correlate well to larger values of ΔTb in the H2O and CO2 bands. These correlations were largely eliminated or reduced after the MODIS spectral response functions were shifted by recommended values. While this investigation shows that the AIRS spatial response functions are necessary to reduce the variability and skewness of ΔTb within heterogeneous scenes, improved knowledge about MODIS spectral response functions is necessary to reduce biases in ΔTb.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2259 ◽  
Author(s):  
Honglin Liu ◽  
Dong Zhang ◽  
Yueming Wang

Due to the strong absorption of water vapor at wavelengths of 1350–1420 nm and 1820–1940 nm, under normal atmospheric conditions, the actual digital number (DN) response curve of a hyperspectral imager deviates from the Gaussian shape, which leads to a decrease in the calibration accuracy of an instrument’s spectral response functions (SRF). The higher the calibration uncertainty of SRF, the worse the retrieval accuracy of the spectral characteristics of the targets. In this paper, an improved spectral calibration method based on a monochromator and the spectral absorptive characteristics of water vapor in the laboratory is presented. The water vapor spectral calibration method (WVSCM) uses the difference function to calculate the intrinsic DN response functions of the spectral channels located in the absorptive wavelength range of water vapor and corrects the wavelength offset of the monochromator via the least-square procedure to achieve spectral calibration throughout the full spectral responsive range of the hyper-spectrometer. The absolute spectral calibration uncertainty is ±0.125 nm. We validated the effectiveness of the WVSCM with two tunable semiconductor lasers, and the spectral wavelength positions calibrated by lasers and the WVSCM showed a good degree of consistency.


Science ◽  
2019 ◽  
Vol 365 (6457) ◽  
pp. 1017-1020 ◽  
Author(s):  
Zongyin Yang ◽  
Tom Albrow-Owen ◽  
Hanxiao Cui ◽  
Jack Alexander-Webber ◽  
Fuxing Gu ◽  
...  

Spectrometers with ever-smaller footprints are sought after for a wide range of applications in which minimized size and weight are paramount, including emerging in situ characterization techniques. We report on an ultracompact microspectrometer design based on a single compositionally engineered nanowire. This platform is independent of the complex optical components or cavities that tend to constrain further miniaturization of current systems. We show that incident spectra can be computationally reconstructed from the different spectral response functions and measured photocurrents along the length of the nanowire. Our devices are capable of accurate, visible-range monochromatic and broadband light reconstruction, as well as spectral imaging from centimeter-scale focal planes down to lensless, single-cell–scale in situ mapping.


Sign in / Sign up

Export Citation Format

Share Document