Natural ventilation in classrooms for healthy schools in the COVID era in Mediterranean climate

2021 ◽  
pp. 108345
Author(s):  
M. Gil-Baez ◽  
J. Lizana ◽  
J.A. Becerra Villanueva ◽  
M. Molina-Huelva ◽  
A. Serrano-Jimenez ◽  
...  
2020 ◽  
Vol 12 (2) ◽  
pp. 473 ◽  
Author(s):  
Hardi K. Abdullah ◽  
Halil Z. Alibaba

Natural ventilation through window openings is an inexpensive and effective solution to bring fresh air into internal spaces and improve indoor environmental conditions. This study attempts to address the “indoor air quality–thermal comfort” dilemma of naturally ventilated office buildings in the Mediterranean climate through the effective use of early window design. An experimental method of computational modelling and simulation was applied. The assessments of indoor carbon dioxide (CO2) concentration and adaptive thermal comfort were performed using the British/European standard BS EN 15251:2007. The results indicate that when windows were opened, the first-floor zones were subjected to the highest CO2 levels, especially the north-facing window in the winter and the south-facing window in the summer. For a fully glazed wall, a 10% window opening could provide all the office hours inside category I of CO2 concentration. Such an achievement requires full and quarter window openings in the cases of 10% and 25% window-to-floor ratios (WFR), respectively. The findings of the European adaptive comfort showed that less than 50% of office hours appeared in category III with cross-ventilation. The concluding remarks and recommendations are presented.


2021 ◽  
pp. 014459872110204
Author(s):  
Aiman Albatayneh

The primary goal of this research was to minimise the energy consumed by heating and cooling loads in residential buildings in a sub-humid Mediterranean climate zone. This was achieved by optimising the design variables of various building envelopes using DesignBuilder software to compare the thermal performance of a baseline building model located in Ajlun (city in northern Jordan mountainous area) with the performance of other buildings with various design configurations. A sensitivity analysis (SA) was then conducted for twelve design variables to evaluate their influence on both cooling and heating loads using a regression method. The variables were divided into two groups according to their importance: a high importance design variables (window to wall ratio, local shading type, round floor construction, natural ventilation rate, infiltration rate (ac/h), glazing type, flat roof construction) and a low importance design variables (partition construction, site orientation, external wall construction, window blind type, window shading control schedule).The final results show significant reduction in the total energy consumption.


2018 ◽  
Vol 10 (9) ◽  
pp. 3284 ◽  
Author(s):  
Halil Alibaba

Air changes per hour (ach) rates for windows of different sizes and opened in different ratios were studied to establish natural ventilation concepts in offices with a Mediterranean climate. Dynamic thermal simulations were carried out in EDSL Tas for whole year investigations of an office. The office lost 0.01 W of heat during the winter but gained 0.01 W of heat during the summer. Annual average heat gain was 2.4 W. The heat gain via an external opaque wall was 138.9 W during the winter and 227.3 W during the summer, with an annual average of 190.7 W. The heat gain via an external glass surface was 128.9 W during the winter and 191 W during the summer, with an annual average of 161.5 W. The office had an average of 170.0 ach during the winter and an average of 144.7 ach during the summer, with an annual average of 157.4. The maximum annual ach performance was 480.4 ach when the external wall was fully glazed and the window was fully open, and the minimum annual ach performance was 9.8 when only 10% of the external wall was glass and 20% of the window area was open.


Buildings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 123 ◽  
Author(s):  
A. Moret Rodrigues ◽  
Miguel Santos ◽  
M. Glória Gomes ◽  
Rogério Duarte

Natural ventilation plays an important role on the thermal and energy performance of a building. The present study aims to analyze the natural ventilation conditions of a dwelling in a Mediterranean climate and their impacts on the thermal and energy performance using an advanced building energy simulation tool. Several multi-zone simulations were carried out. In the summer, the simulations were performed under free-floating conditions, whereas in the winter they were carried out under controlled temperature conditions. In the summer, ventilation scenarios with windows opened during certain periods of time and with or without permanent openings in the facades were analyzed. The existence of permanent openings proved to be an important factor of temperature control by lowering the average indoor zone temperatures during the day. Cross-ventilation also showed to be effective. In the winter, we simulated the existence or absence of permanent openings for room ventilation and their surface area. The results showed that the stack effect plays an important role in the ventilation and that in general it outperforms the wind effect. Sizing permanent openings according to the standard guidelines proved to be adequate in providing the expected ventilation rates on an average basis.


Author(s):  
I.G.C. Kerr ◽  
J.M. Williams ◽  
W.D. Ross ◽  
J.M. Pollard

The European rabbit (Oryctolagus cuniculus) introduced into New Zealand in the 183Os, has consistently flourished in Central Otago, the upper Waitaki, and inland Marlborough, all areas of mediterranean climate. It has proved difficult to manage in these habitats. The 'rabbit problem' is largely confined to 105,000 ha of low producing land mostly in semi arid areas of Central Otago. No field scale modifications of the natural habitat have been successful in limiting rabbit numbers. The costs of control exceed the revenue from the land and continued public funding for control operations appears necessary. A system for classifying land according to the degree of rabbit proneness is described. Soil survey and land classification information for Central Otago is related to the distribution and density of rabbits. This intormation can be used as a basis for defining rabbit carrying capacity and consequent land use constraints and management needs. It is concluded that the natural rabbit carrying capacity of land can be defined by reference to soil survey information and cultural modification to the natural vegetation. Classification of land according to rabbit proneness is proposed as a means of identifying the need for, and allocation of, public funding tor rabbit management. Keywords: Rabbit habitat, rabbit proneness, use of rabbit prone land.


2020 ◽  
Vol 14 (3) ◽  
pp. 7109-7124
Author(s):  
Nasreddine Sakhri ◽  
Younes Menni ◽  
Houari Ameur ◽  
Ali J. Chamkha ◽  
Noureddine Kaid ◽  
...  

The wind catcher or wind tower is a natural ventilation technique that has been employed in the Middle East region and still until nowadays. The present paper aims to study the effect of the one-sided position of a wind catcher device against the ventilated space or building geometry and its natural ventilation performance. Four models based on the traditional design of a one-sided wind catcher are studied and compared. The study is achieved under the climatic conditions of the South-west of Algeria (arid region). The obtained results showed that the front and Takhtabush’s models were able to create the maximum pressure difference (ΔP) between the windward and leeward of the tower-house system. Internal airflow velocities increased with the increase of wind speed in all studied models. For example, at Vwind = 2 m/s, the internal flow velocities were 1.7, 1.8, 1.3, and 2.5 m/s for model 1, 2, 3, and 4, respectively. However, at Vwind = 6 m/s, the internal flow velocities were 5.6, 5.5, 2.5, and 7 m/s for model 1, 2, 3, and 4, respectively. The higher internal airflow velocities are given by Takhtabush, traditional, front and middle tower models, respectively, with a reduction rate between the tower outlet and occupied space by 72, 42, 36, and 33% for the middle tower, Takhtabush, traditional tower, and the front model tower, respectively. This reduction is due to the due to internal flow resistance. The third part of the study investigates the effect of window (exist opening) position on the opposite wall. The upper, middle and lower window positions are studied and compared. The air stagnation or recirculation zone inside the ventilated space reduced from 55% with the lower window to 46% for the middle window and reached 35% for the upper window position. The Front and Takhtabush models for the one-sided wind catcher with an upper window position are highly recommended for the wind-driven natural ventilation in residential houses that are located in arid regions.


Sign in / Sign up

Export Citation Format

Share Document