scholarly journals Manufacturing of Screw Rotors Via 5-axis Double-Flank CNC Machining

2021 ◽  
Vol 132 ◽  
pp. 102960
Author(s):  
Michal Bizzarri ◽  
Michael Bartoň
Keyword(s):  
2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


Author(s):  
Xiaodong Yu ◽  
Yu Wang ◽  
Junfeng Wang ◽  
Wenkai Zhou ◽  
Hongwei Bi ◽  
...  

Background: Hydrostatic bearings have the advantages of strong bearing capacity, good stability, small friction coefficient and long life. The performance of liquid hydrostatic bearings directly affect the accuracy and efficiency of CNC machining equipment. The performance is conducive to the development of CNC machine tools towards high speed and heavy load, so it is necessary to sort out and summarize the existing research results. Objective: This study summarizes the current development status of hydrostatic bearings and explains the development trend of hydrostatic bearings. Methods: According to the recently published journal articles and patents, the recent experimental research on hydrostatic thrust bearings is summarized. This paper summarizes many factors that affect the performance of hydrostatic bearings, and discusses the causes of various factors on hydrostatic bearings. Finally, future research on hydrostatic bearings is presented. Results: The study discusses experimental methods, simulation processes, and experimental results. Conclusion: This study can produce dynamic and static pressure effects by changing the structure of the oil cavity of the hydrostatic bearing. This effect can make up for the static pressure loss. By improving the theoretical formula and mathematical model and proposing a new simulation method, the accuracy of the hydrostatic bearing simulation is satisfied; the future development trend of the hydrostatic bearing is proposed.


1987 ◽  
Vol 52 (2) ◽  
pp. 357-371 ◽  
Author(s):  
František Rieger

This paper summarizes the present state of the theory of calculation of the pumping capacity of screw rotors. The calculation starts from the equation for the volumetric flow rate of the flow between two unconfined plates modified by correction coefficients obtained from the relationships for the flow rate in simpler geometrical configurations to which the screw rotor may be, under certain circumstances, reduced.


1989 ◽  
Vol 54 (6) ◽  
pp. 1575-1588 ◽  
Author(s):  
František Rieger
Keyword(s):  

A method has been proposed of the calculation of screw rotors. The calculation starts from the equation for the power input for the flow between two plates corrected by correction coefficients.


2021 ◽  
Vol 11 (11) ◽  
pp. 4959
Author(s):  
Peng Guo ◽  
Yijie Wu ◽  
Guang Yang ◽  
Zhebin Shen ◽  
Haorong Zhang ◽  
...  

The curvature of the NURBS curve varies along its trajectory, therefore, the commonly used feedrate-planning method, which based on the acceleration/deceleration (Acc/Dec) model, is difficult to be directly applied in CNC machining of a NURBS curve. To address this problem, a feedrate-planning method based on the critical constraint curve of the feedrate (CCC) is proposed. Firstly, the problems of existing feedrate-planning methods and their causes are analyzed. Secondly, by considering both the curvature constraint and the kinematic constraint during the Acc/Dec process, the concept of CCC which represents the relationship between the critical feedrate-constraint value and the arc length is proposed. Then the CCC of a NURBS curve is constructed, and it has a concise expression conforming to the Acc/Dec model. Finally, a feedrate-planning method of a NURBS curve based on CCC and the Acc/Dec model is established. In the simulation, a comparison between the proposed method and the conventional feedrate-planning method is performed, and the results show that, the proposed method can reduce the Acc/Dec time by over 40%, while little computational burden being added. The machining experimental results validate the real-time performance and stability of the proposed method, and also the machining quality is verified. The proposed method offers an effective feedrate-planning strategy for a NURBS curve in CNC machining.


Author(s):  
Mandeep Dhanda ◽  
Aman Kukreja ◽  
SS Pande

This paper reports a novel method to generate adaptive spiral tool path for the CNC machining of complex sculptured surface represented in the form of cloud of points without the need for surface fitting. The algorithm initially uses uniform 2 D circular mesh-grid to compute the cutter location (CL) points by applying the tool inverse offset method (IOM). These CL points are refined adaptively till the surface form errors converge below the prescribed tolerance limits in both circumferential and radial directions. They are further refined to eliminate the redundancy in machining and generate optimum region wise tool path to minimize the tool lifts. The NC part programs generated by our algorithm were widely tested for different case studies using the commercial CNC simulator as well as by the actual machining trial. Finally, a comparative study was done between our developed system and the commercial CAM software. The results showed that our system is more efficient and robust in terms of the obtained surface quality, productivity, and memory requirement.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4852
Author(s):  
Grzegorz Bomba ◽  
Artur Ornat ◽  
Piotr Gierlak

The article discusses the quality testing of a measuring system consisting of a CNC machine with measuring probes. The research was conducted in a broader context regarding the implementation of the closed door technology, i.e., production without human intervention, in an aviation plant manufacturing aircraft gearbox systems. This technology may involve automated measuring operations performed in machining centers, and not in measuring laboratories, provided that the quality of the measurements is appropriate. The aim of the study was to investigate whether the CNC machining device can be used to measure the geometric features of aircraft gearbox housing. For this purpose, measurement experiments were carried out with the use of three different probes. Measurements were carried out using four sequences of increasing complexity, so that, after error analysis, it was possible to find the causes of possible irregularities. A reference ring with known dimensions and position in the working space of the machine was used for the measurements performed as part of the assessment of the measurement system. The quality of the measurements was evaluated with the use of repeatability and reproducibility testing and statistical process control. The analysis results showed that the tested measurement system ensures adequate accuracy and repeatability, and the measurement process is characterized with adequate efficiency in relation to the manufacturing tolerance of the components produced using the machine. Thus, it was proven that the measurement process can be carried out on a machining device, which enables its integration into the closed door technology.


Sign in / Sign up

Export Citation Format

Share Document