scholarly journals Existence of the second positive radial solution for a p-Laplacian problem

2011 ◽  
Vol 235 (13) ◽  
pp. 3743-3750 ◽  
Author(s):  
Chan-Gyun Kim ◽  
Eun Kyoung Lee ◽  
Yong-Hoon Lee
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Maria Alessandra Ragusa ◽  
Abdolrahman Razani ◽  
Farzaneh Safari

AbstractIn this paper, using variational methods, we prove the existence of at least one positive radial solution for the generalized $p(x)$ p ( x ) -Laplacian problem $$ -\Delta _{p(x)} u + R(x) u^{p(x)-2}u=a (x) \vert u \vert ^{q(x)-2} u- b(x) \vert u \vert ^{r(x)-2} u $$ − Δ p ( x ) u + R ( x ) u p ( x ) − 2 u = a ( x ) | u | q ( x ) − 2 u − b ( x ) | u | r ( x ) − 2 u with Dirichlet boundary condition in the unit ball in $\mathbb{R}^{N}$ R N (for $N \geq 3$ N ≥ 3 ), where a, b, R are radial functions.


2021 ◽  
Vol 11 (1) ◽  
pp. 294-302
Author(s):  
Gal Davidi

Abstract In this work an analysis of the radial stress and velocity fields is performed according to the J 2 flow theory for a rigid/perfectly plastic material. The flow field is used to simulate the forming processes of sheets. The significant achievement of this paper is the generalization of the work by Nadai & Hill for homogenous material in the sense of its yield stress, to a material with general transverse non-homogeneity. In Addition, a special un-coupled form of the system of equations is obtained where the task of solving it reduces to the solution of a single non-linear algebraic differential equation for the shear stress. A semi-analytical solution is attained solving numerically this equation and the rest of the stresses term together with the velocity field is calculated analytically. As a case study a tri-layered symmetrical sheet is chosen for two configurations: soft inner core and hard coating, hard inner core and soft coating. The main practical outcome of this work is the derivation of the validity limit for radial solution by mapping the “state space” that encompasses all possible configurations of the forming process. This configuration mapping defines the “safe” range of configurations parameters in which flawless processes can be achieved. Several aspects are researched: the ratio of material's properties of two adjacent layers, the location of layers interface and friction coefficient with the walls of the dies.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


2017 ◽  
Vol 19 (03) ◽  
pp. 1650042 ◽  
Author(s):  
Ederson Moreira dos Santos ◽  
Filomena Pacella

We consider non-autonomous semilinear elliptic equations of the type [Formula: see text] where [Formula: see text] is either a ball or an annulus centered at the origin, [Formula: see text] and [Formula: see text] is [Formula: see text] on bounded sets of [Formula: see text]. We address the question of estimating the Morse index [Formula: see text] of a sign changing radial solution [Formula: see text]. We prove that [Formula: see text] for every [Formula: see text] and that [Formula: see text] if [Formula: see text] is even. If [Formula: see text] is superlinear the previous estimates become [Formula: see text] and [Formula: see text], respectively, where [Formula: see text] denotes the number of nodal sets of [Formula: see text], i.e. of connected components of [Formula: see text]. Consequently, every least energy nodal solution [Formula: see text] is not radially symmetric and [Formula: see text] as [Formula: see text] along the sequence of even exponents [Formula: see text].


Author(s):  
Noriko Mizoguchi

We are concerned with a Cauchy problem for the semilinear heat equationthen u is called a backward self-similar solution blowing up at t = T. Let pS and pL be the Sobolev and the Lepin exponents, respectively. It was shown by Mizoguchi (J. Funct. Analysis257 (2009), 2911–2937) that k ≡ (p − 1)−1/(p−1) is a unique regular radial solution of (P) if p > pL. We prove that it remains valid for p = pL. We also show the uniqueness of singular radial solution of (P) for p > pS. These imply that the structure of radial backward self-similar blow-up solutions is quite simple for p ≥ pL.


Sign in / Sign up

Export Citation Format

Share Document