Dynamic analysis of AFM by applying Timoshenko beam theory in tapping mode and considering the impact of interaction forces in a liquid environment

2014 ◽  
Vol 92 (6) ◽  
pp. 472-483 ◽  
Author(s):  
M. Damircheli ◽  
M.H. Korayem

In an atomic force microscope (AFM), the cantilever vibrates by excitation at a frequency near the fundamental frequency, and the changes in vibration parameters, which result from the nonlinear forces of interaction between sample and cantilever tip, can be used as a tool to reveal the properties of the sample. To properly describe the images acquired by the AFM and to approximate the properties of the investigated sample, it is essential to use analytical and numerical models that can accurately simulate the dynamics of the cantilever and sample. For short beams, the Timoshenko model seems to be very accurate. Considering the fact that short beams (cantilevers) have many applications including the imaging of biological samples in liquid environments, the use of this theory seems to be necessary. In this paper, by employing the Timoshenko beam model, the effect of rotational inertia and shear deformation has been taken into consideration. The interaction forces between sample and cantilever in liquid, ambient air, and vacuum environments are quite different in terms of magnitude and formulation, and they play a significant role in the system’s dynamic response. These forces include hydrodynamic forces, electrostatic double layer force, etc. Using an accurate model for the interaction forces will improve the simulation results significantly. In this paper, the frequency response of the atomic force microscope has been investigated by applying the Timoshenko beam model and considering the forces of interaction between sample and tip in the air and liquid environments. The results indicate that the resonant frequency changes and cantilever vibration amplitude diminishes in a liquid environment compared to the air environment. The simulation results have good agreement with the experimental ones. The frequency responses for the attractive and repulsive regions in the two environments are compared and it is demonstrated that the dynamic response is highly dependent on the hydrodynamic and interaction forces in the liquid medium.

Author(s):  
Andrew J. Dick ◽  
Wei Huang

The dynamic response of an atomic force microscope cantilever probe is studied for off-resonance excitation and interactions with a soft silicone rubber material. The dynamic response of the probe is simulated using a three-mode approximation of the Euler-Bernoulli beam model for excitation at two-and-a-half times the probe’s fundamental frequency. These simulations are conducted in order to reproduce the period-doubling bifurcation experimentally observed in the response of the probe of a commercial atomic force microscope. In order to duplicate this behavior, parameters within the surface force model are tuned to account for variations in the characteristics of the sample material. Through this work, the relationship between the sample material’s effective stiffness and the response behavior of the probe are studied in an effort to develop the means to identify the local material properties of a sample by characterize the nonlinear response of the probe.


2013 ◽  
Vol 19 (3) ◽  
pp. 761-768
Author(s):  
Moharam Habibnejad Korayem ◽  
Nazila Ebrahimi

AbstractCarbon nanotubes (CNT) are proper tips for atomic force microscopes (AFMs) as a result of their small tip diameter, high aspect ratio, and high flexibility. For nanoscale imaging of soft biological specimens, a CNT tipped AFM is an ideal tool. In this article we review the application of CNTs as AFM tips and present related research about the forces applied from liquids on nanotubes. Then a dynamic mode CNT tipped AFM in liquid is modeled and simulated. The simulation results are compared with experimental results. For modeling and simulation, a continuous beam model and a forward-time simulation method are used. The simulation results show that when a CNT tip vibrates in liquid, the oscillation amplitude and resonance frequency are changed compared to the state of oscillation in air. The small structure of CNTs reduces the hydrodynamic forces, and the liquid environment reduces the adhesive forces between the CNT tip and the sample. These two factors make CNTs a good choice as an AFM tip.


Sign in / Sign up

Export Citation Format

Share Document