scholarly journals Laplacian spectrum characterization of extensions of vertices of wheel graphs and multi-fan graphs

2010 ◽  
Vol 60 (7) ◽  
pp. 2003-2008 ◽  
Author(s):  
Yuanqing Lin ◽  
Jinlong Shu ◽  
Yao Meng
2015 ◽  
Vol 9 (1) ◽  
pp. 39-58 ◽  
Author(s):  
S. Barik ◽  
R.B. Bapat ◽  
S. Pati

Graph products and their structural properties have been studied extensively by many researchers. We investigate the Laplacian eigenvalues and eigenvectors of the product graphs for the four standard products, namely, the Cartesian product, the direct product, the strong product and the lexicographic product. A complete characterization of Laplacian spectrum of the Cartesian product of two graphs has been done by Merris. We give an explicit complete characterization of the Laplacian spectrum of the lexicographic product of two graphs using the Laplacian spectra of the factors. For the other two products, we describe the complete spectrum of the product graphs in some particular cases. We supply some new results relating to the algebraic connectivity of the product graphs. We describe the characteristic sets for the Cartesian product and for the lexicographic product of two graphs. As an application we construct new classes of Laplacian integral graphs.


10.37236/314 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jianfeng Wang ◽  
Francesco Belardo ◽  
Qiongxiang Huang ◽  
Enzo M. Li Marzi

A dumbbell graph, denoted by $D_{a,b,c}$, is a bicyclic graph consisting of two vertex-disjoint cycles $C_a$, $C_b$ and a path $P_{c+3}$ ($c \geq -1$) joining them having only its end-vertices in common with the two cycles. In this paper, we study the spectral characterization w.r.t. the adjacency spectrum of $D_{a,b,0}$ (without cycles $C_4$) with $\gcd(a,b)\geq 3$, and we complete the research started in [J.F. Wang et al., A note on the spectral characterization of dumbbell graphs, Linear Algebra Appl. 431 (2009) 1707–1714]. In particular we show that $D_{a,b,0}$ with $3 \leq \gcd(a,b) < a$ or $\gcd(a,b)=a$ and $b\neq 3a$ is determined by the spectrum. For $b=3a$, we determine the unique graph cospectral with $D_{a,3a,0}$. Furthermore we give the spectral characterization w.r.t. the signless Laplacian spectrum of all dumbbell graphs.


10.37236/131 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Steve Kirkland

A conjecture of Grone and Merris states that for any graph $G$, its Laplacian spectrum, $\Lambda(G)$, is majorized by its conjugate degree sequence, $D^*(G)$. That conjecture prompts an investigation of the relationship between $\Lambda(G)$ and $D^*(G),$ and Merris has characterized the graphs $G$ for which the multisets $\Lambda(G)$ and $D^*(G)$ are equal. In this paper, we provide a constructive characterization of the graphs $G$ for which $\Lambda(G)$ and $D^*(G)$ share all but two elements.


Filomat ◽  
2018 ◽  
Vol 32 (6) ◽  
pp. 2283-2294 ◽  
Author(s):  
Mohammad Iranmanesh ◽  
Mahboubeh Saheli

A signed graph consists of a (simple) graph G=(V,E) together with a function ? : E ? {+,-} called signature. Matrices can be associated to signed graphs and the question whether a signed graph is determined by the set of its eigenvalues has gathered the attention of several researchers. In this paper we study the spectral determination with respect to the Laplacian spectrum of signed ?-graphs. After computing some spectral invariants and obtain some constraints on the cospectral mates, we obtain some non isomorphic signed graphs cospectral to signed ?-graphs and we study the spectral characterization of the signed ?-graphs containing a triangle.


2015 ◽  
Vol 46 (5) ◽  
pp. 613-631 ◽  
Author(s):  
Fei Wen ◽  
Qiongxiang Huang ◽  
Xueyi Huang ◽  
Fenjin Liu

Filomat ◽  
2016 ◽  
Vol 30 (14) ◽  
pp. 3689-3696 ◽  
Author(s):  
Shaobin Huang ◽  
Jiang Zhou ◽  
Changjiang Bu

A graph is said to be DQS if there is no other non-isomorphic graph with the same signless Laplacian spectrum. For a DQS graph G, we show that G ? rK1 is DQS under certain conditions. Applying these results, some DQS graphs with isolated vertices are obtained.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document