Effects of crystallization on the optical properties of ZnO nano-pillar thin films by sol-gel method

2011 ◽  
Vol 11 (5) ◽  
pp. 1243-1248 ◽  
Author(s):  
K.J. Chen ◽  
F.Y. Hung ◽  
S.J. Chang ◽  
S.J. Young ◽  
Z.S. Hu
2014 ◽  
Vol 23 (4) ◽  
pp. 047805 ◽  
Author(s):  
Meng-Meng Cao ◽  
Xiao-Ru Zhao ◽  
Li-Bing Duan ◽  
Jin-Ru Liu ◽  
Meng-Meng Guan ◽  
...  

2008 ◽  
Vol 517 (3) ◽  
pp. 1032-1036 ◽  
Author(s):  
Chien-Yie Tsay ◽  
Hua-Chi Cheng ◽  
Yen-Ting Tung ◽  
Wei-Hsing Tuan ◽  
Chung-Kwei Lin

Ionics ◽  
2010 ◽  
Vol 16 (9) ◽  
pp. 815-820 ◽  
Author(s):  
Yidong Zhang ◽  
Wenjun Fa ◽  
Fengling Yang ◽  
Zhi Zheng ◽  
Pingyu Zhang

2021 ◽  
Vol 24 (3) ◽  
pp. 38-42
Author(s):  
Marwa Mudfer Alqaisi ◽  
◽  
Alla J. Ghazai ◽  

In this work, pure Zinc oxide and tin doped Zinc oxide thin films nanoparticles with various volume concentrations of 2, 4, 6, and 8V/V% were prepared by using the sol-gel method. The optical properties were investigated by using UV-Visible spectroscope, and the value exhibits the direct allowed transition. The average of transmittance was around ~(17-23) %in visible region. The optical energy band gap was calculated with wavelength (300-900) nm for pure ZnO and Sn doped ZnO thin films which decreases with increasing concentration from 3.4 eV to 3.1 eV respectively and red shift. The real dielectric(εr) and the imaginary dielectric εiare the same behavior of the refractive index(n) the extinction coefficient (k) respectively. The optical limiting properties were studied by using an SDL laser with a wavelength of 235 nm. ZnO and doping thin films an found efficient as optic limiting and depend on the concentration of the all samples.


2011 ◽  
Vol 44 (3) ◽  
pp. 550-554 ◽  
Author(s):  
Jianjun Tian ◽  
Hongmei Deng ◽  
Lin Sun ◽  
Hui Kong ◽  
Pingxiong Yang ◽  
...  

2019 ◽  
Vol 293 ◽  
pp. 83-95
Author(s):  
Marek Szindler

The use of thin films in optoelectronic and photovoltaic devices is aimed at improving the physical properties of the substrate material. The modification of the surface of the silicon substrate is thus one of the greatest challenges in research on photovoltaic materials, in order to achieve even greater efficiency or better adapt their properties depending on the application. The technologies of applying layers vary depending on the effect to be obtained and the material from which the layer is formed. In practice, the most common method is chemical vapor deposition and physical vapor deposition, and the most commonly applied optical materials are SiO2, TiO2 and Si3N4.This paper presents the results of investigations on morphology and optical properties of the prepared aluminium oxide thin films. Thin films were prepared with use of sol-gel spin coating method. Surface morphology studies were carried out using an atomic force microscope. To characterize the surface of the thin films, 3D images and histograms of the frequency of individual inequalities were made. In order to characterize the optical properties of Al2O3 thin films, the reflectance and light transmission tests were performed using a spectrophotometer. Optical constants were determined using a spectroscopic ellipsometer. Results and their analysis show that the sol-gel method allows the deposition of homogenous thin films of Al2O3 with the desired geometric characteristics and good optical properties. Uniform, continuous thin layers with a roughness not exceeding a few nanometres were deposited. Their deposition enabled to reduce the reflection of light from the polished substrate below 15% in a wide range (425-800nm) while maintaining high transparencies (over 90%). The obtained results causes that mentioned thin films are good potential material for optics, optoelectronics and photovoltaics.


Sign in / Sign up

Export Citation Format

Share Document