scholarly journals Nitrogen functionalized carbon black: A support for Pt nanoparticle catalysts with narrow size dispersion and high surface area

Carbon ◽  
2015 ◽  
Vol 81 ◽  
pp. 115-123 ◽  
Author(s):  
Suzanne S. Rich ◽  
Jonathan J. Burk ◽  
Chang Sun Kong ◽  
Cynthia D. Cooper ◽  
Daniel E. Morse ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
pp. 186 ◽  
Author(s):  
Hai-Yan Hu ◽  
Ning Xie ◽  
Chen Wang ◽  
Fan Wu ◽  
Ming Pan ◽  
...  

The effects of carbon black specific surface area and morphology were investigated by characterizing four different carbon black additives and then evaluating the effect of adding them to the negative electrode of valve-regulated lead–acid batteries for electric bikes. Low-temperature performance, larger current discharge performance, charge acceptance, cycle life and water loss of the batteries with carbon black were studied. The results show that the addition of high-performance carbon black to the negative plate of lead–acid batteries has an important effect on the cycle performance at 100% depth-of-discharge conditions and the cycle life is 86.9% longer than that of the control batteries. The excellent performance of the batteries can be attributed to the high surface area carbon black effectively inhibiting the sulfation of the negative plate surface and improving the charge acceptance of the batteries.


2018 ◽  
Vol 148 (5) ◽  
pp. 1504-1513 ◽  
Author(s):  
Hanseul Choi ◽  
Michele Carboni ◽  
You Kyung Kim ◽  
Chan Ho Jung ◽  
Song Yi Moon ◽  
...  

2019 ◽  
Vol 41 (4) ◽  
pp. 664-664
Author(s):  
Ruiyuan Tang Ruiyuan Tang ◽  
Junhui Hao Junhui Hao ◽  
Kai Liu Kai Liu ◽  
Yingyun Qiao Yingyun Qiao ◽  
Juntao Zhang and Yuanyu Tian Juntao Zhang and Yuanyu Tian

High surface area calcium aluminate is synthetized within a short time by using a carbon template solid state calcination method which involved addition of carbon black into the CaCO3 and Al2O3 powders, calcination, and carbon removal by steam. Vary carbon black dosage changed the textural properties of the calcium aluminate, such as the surface area. By varying carbon black dosage from 0 to 10.0 wt%, the calcium aluminate with a surface area ranging from 21.5 to 41.2 m2and#183;g–1 are successfully synthesized within 14.0 h. Furthermore, the nanometer sized CaCO3 and Al2O3 powders comprising carbon black could markedly reduce the calcination temperature without reducing the surface area. This research might lead to the cost-effective synthesis of calcium aluminate (Ca12Al14O33) in a short synthesis period.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Tiago Almeida Silva ◽  
Fernando Cruz Moraes ◽  
Bruno Campos Janegitz ◽  
Orlando Fatibello-Filho

Carbon black (CB) is a nanostructured material widely used in several industrial processes. This nanomaterial features a set of remarkable properties including high surface area, high thermal and electrical conductivity, and very low cost. Several studies have explored the applicability of CB in electrochemical fields. Recent data showed that modified electrodes based on CB present fast charge transfer and high electroactive surface area, comparable to carbon nanotubes and graphene. These characteristics make CB a promising candidate for the design of electrochemical sensors and biosensors. In this review, we highlight recent advances in the use of CB as a template for biosensing. As will be seen, we discuss the main biosensing strategies adopted for enzymatic catalysis for several target analytes, such as glucose, hydrogen peroxide, and environmental contaminants. Recent applications of CB on DNA-based biosensors are also described. Finally, future challenges and trends of CB use in bioanalytical chemistry are discussed.


Sign in / Sign up

Export Citation Format

Share Document