Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene – A molecular dynamics study

Carbon ◽  
2015 ◽  
Vol 85 ◽  
pp. 135-146 ◽  
Author(s):  
M.Q. Chen ◽  
S.S. Quek ◽  
Z.D. Sha ◽  
C.H. Chiu ◽  
Q.X. Pei ◽  
...  
2021 ◽  
Vol 11 (11) ◽  
pp. 1841-1855
Author(s):  
Alexandre Melhorance Barboza ◽  
Ivan Napoleão Bastos ◽  
Luis César Rodríguez Aliaga

The grain size refinement of metallic materials to the nanometer scale produces interesting properties compared to the coarse-grained counterparts. Their mechanical behavior, however, cannot be explained by the classical deformation mechanisms. Using molecular dynamics simulations, the present work examines the influence of grain size on the deformation mechanisms and mechanical properties of nanocrystalline nickel. Samples with grain sizes from 3.2 to 24.1 nm were created using the Voronoi tessellation method and simulated in tensile and relaxation tests. The yield and ultimate tensile stresses follow an inverse Hall-Petch relationship for grain sizes below ca. 20 nm. For samples within the conventional Hall-Petch regime, no perfect dislocations were observed. Nonetheless, a few extended dislocations were nucleated from triple junctions, suggesting that the suppression of conventional slip mechanism is not uniquely responsible for the inverse Hall-Petch behavior. For samples respecting the inverse Hall-Petch regime, the high number of triple junctions and grain boundaries allowed grain rotation, grain boundary sliding, and diffusion-like behavior that act as competitive deformation mechanisms. For all samples, the atomic configuration analysis showed that Shockley partial dislocations are nucleated at grain boundaries, crossing the grain before being absorbed in opposite grain boundaries, leaving behind stacking faults. Interestingly, the stress relaxation tests showed that the strain rate sensitivity decreases with grain size for a specific grain size range, whereas for grains below approximately 10 nm, the strain rate sensitivity increases as observed experimentally. Repeated stress relaxation tests were also performed to obtain the effective activation volume parameter. However, the expected linear trend in pertinent plots required to obtain this parameter was not found.


Surfaces ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 381-391
Author(s):  
Jan Herman ◽  
Marko Govednik ◽  
Sandeep P. Patil ◽  
Bernd Markert

In the present work, the mechanical properties of nanocrystalline body-centered cubic (BCC) iron with an average grain size of 10 Å were investigated using molecular dynamics (MD) simulations. The structure has one layer of crystal grains, which means such a model could represent a structure with directional crystallization. A series of uniaxial tensile tests with different strain rates and temperatures was performed until the full rupture of the model. Moreover, tensile tests of the models with a void at the center and shear tests were carried out. In the tensile test simulations, peak stress and average values of flow stress increase with strain rate. However, the strain rate does not affect the elasticity modulus. Due to the presence of void, stress concentrations in structure have been observed, which leads to dislocation pile-up and grain boundary slips at lower strains. Furthermore, the model with the void reaches lower values of peak stresses as well as stress overshoot compared to the no void model. The study results provide a better understanding of the mechanical response of nanocrystalline BCC iron under various loadings.


2015 ◽  
Vol 13 (2) ◽  
pp. 282-297
Author(s):  
Archana Rethinam ◽  
Vinoo D. Shivakumar ◽  
L. Harish ◽  
M.B. Abhishek ◽  
G.V. Ramana ◽  
...  

Purpose – The application of new technologies requires, however, modern rolling mills. Indeed, in manufacturing plants of older types, strict compliance with the developed rolling regimes is not always feasible. Improving the mechanical properties in such cases is possible only by means of cooling. Compressive deformation behavior of carbon–manganese (C-Mn) grade has been investigated at temperatures ranging from 800-900°C and strain rate from 0.01-50 s−1 on Gleeble-3800, a thermo-mechanical simulator. Simulation studies have been conducted mainly to observe the microstructural changes for various strain rate and deformation temperatures at a constant strain of 0.5 and a cooling rate of 20°C s−1. Design/methodology/approach – The project begins with simulation of a hot rolling condition using the thermo-mechanical simulator; this was followed by microstructural examination and identification of phases present by using an optical microscope for hot-rolled coil and simulated samples; grain size measurement and size distribution studies; and optimization of finishing temperature, coiling temperature and cooling rate by mimicking plant processing parameters to improve the mechanical properties. Findings – As the strain rate and temperature increase, pearlite banding decreases gradually and finally gets completely eliminated, thereby improving the mechanical properties. True stress–strain curves were plotted to extrapolate the effect of strain-hardening and strain rate sensitivity on austenite (γ) and austenite–ferrite (γ-a) regions. To validate the effect of strain rate and temperature over the grain size, the hardness of simulated samples was measured using the universal hardness tester and the corresponding tensile strength was found from the standard hardness chart. Practical implications – The results of the study carried out have projected a new technology of thermo-mechanical simulation for the studied C-Mn grade. These results were used to optimize the plant processing parameter like finishing and coiling temperature and finishing stands strain rate. Originality/value – By controlling the hot rolling conditions like finishing, coiling temperature and cooling rate, structures differing in mechanical properties can be obtained for the same material. Accurate understanding of a structure being formed when different temperatures are applied enables the control of the process that assures intended structures and mechanical properties are achieved.


Author(s):  
Jun Hua ◽  
Zhirong Duan ◽  
Chen Song ◽  
Qinlong Liu

In this paper, the mechanical properties, including elastic properties, deformation mechanism, dislocation formation and crack propagation of graphene/Cu (G/Cu) nanocomposite under uniaxial tension are studied by molecular dynamics (MD) method and the strain rate dependence is also investigated. Firstly, through the comparative analysis of tensile results of single crystal copper (Cu), single slice graphene/Cu (SSG/Cu) nanocomposite and double slice graphene/Cu (DSG/Cu) nanocomposite, it is found that the G/Cu nanocomposites have larger initial equivalent elastic modulus and tensile ultimate strength comparing with Cu and the more content of graphene, the greater the tensile strength of composites. Afterwards, by analyzing the tensile results of SSG/Cu nanocomposite under different strain rates, we find that the tensile ultimate strength of SSG/Cu nanocomposite increases with the increasing of strain rate gradually, but the initial equivalent elastic modulus basically remains unchanged.


Sign in / Sign up

Export Citation Format

Share Document