Nanograin size effects on deformation mechanisms and mechanical properties of nickel: A molecular dynamics study

2021 ◽  
Vol 11 (11) ◽  
pp. 1841-1855
Author(s):  
Alexandre Melhorance Barboza ◽  
Ivan Napoleão Bastos ◽  
Luis César Rodríguez Aliaga

The grain size refinement of metallic materials to the nanometer scale produces interesting properties compared to the coarse-grained counterparts. Their mechanical behavior, however, cannot be explained by the classical deformation mechanisms. Using molecular dynamics simulations, the present work examines the influence of grain size on the deformation mechanisms and mechanical properties of nanocrystalline nickel. Samples with grain sizes from 3.2 to 24.1 nm were created using the Voronoi tessellation method and simulated in tensile and relaxation tests. The yield and ultimate tensile stresses follow an inverse Hall-Petch relationship for grain sizes below ca. 20 nm. For samples within the conventional Hall-Petch regime, no perfect dislocations were observed. Nonetheless, a few extended dislocations were nucleated from triple junctions, suggesting that the suppression of conventional slip mechanism is not uniquely responsible for the inverse Hall-Petch behavior. For samples respecting the inverse Hall-Petch regime, the high number of triple junctions and grain boundaries allowed grain rotation, grain boundary sliding, and diffusion-like behavior that act as competitive deformation mechanisms. For all samples, the atomic configuration analysis showed that Shockley partial dislocations are nucleated at grain boundaries, crossing the grain before being absorbed in opposite grain boundaries, leaving behind stacking faults. Interestingly, the stress relaxation tests showed that the strain rate sensitivity decreases with grain size for a specific grain size range, whereas for grains below approximately 10 nm, the strain rate sensitivity increases as observed experimentally. Repeated stress relaxation tests were also performed to obtain the effective activation volume parameter. However, the expected linear trend in pertinent plots required to obtain this parameter was not found.

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2803 ◽  
Author(s):  
Abdelrahim Husain ◽  
Peiqing La ◽  
Yue Hongzheng ◽  
Sheng Jie

Molecular dynamics simulations were conducted to study the mechanical properties of nanocrystalline 316L stainless steel under tensile load. The results revealed that the Young’s modulus increased with increasing grain size below the critical average grain size. Two grain size regions were identified in the plot of yield stress. In the first region, corresponding to grain sizes above 7.7 nm, the yield stress decreased with increasing grain size and the dominant deformation mechanisms were deformation twinning and extended dislocation. In the second region, corresponding to grain sizes below 7.7 nm, the yield stress decreased rapidly with decreasing grain size and the dominant deformation mechanisms were grain boundary sliding and also grain rotation. The yield strength and Young’s modulus were both found to decrease with increasing temperature, which increased the interatomic distance and thereby decreased the interatomic bonding force.


1990 ◽  
Vol 188 ◽  
Author(s):  
James E. Steinwall ◽  
H. H. Johnson

ABSTRACTThin film aluminum fibers with grain sizes of 35 and 100 nm were pulled in a microtensile tester. The larger grains led to greater yield and tensile strengths but smaller strains to failure. Both samples had mechanical strengths 3–6 times greater than bulk aluminum. In addition, the small grained fibers had a strain rate sensitivity exponent of 0.26 suggesting diffusion controlled plastic deformation mechanisms.


2000 ◽  
Vol 634 ◽  
Author(s):  
H. Van Swygenhoven ◽  
P. Derlet ◽  
A. Caro ◽  
D. Farkas ◽  
M. Caturla ◽  
...  

ABSTRACTMolecular dynamics computer simulation of nanocrystalline Ni and Cu with mean grain sizes ranging from 5 to 20 nm show that grain boundaries in nanocrystalline metals have structures similar to most grain boundaries found in conventional polycrystalline materials. Moreover, the excess enthalpy density in grain boundaries and triple junctions appears to be independent of grain in both, computer generated and experimental measured samples. Simulations of deformation under constant uniaxial stress demonstrate a change in deformation mechanism as function of grain size: at the smallest grain sizes all deformation is accommodated in the grain boundaries, at higher grain sizes, intragrain deformation is observed


2012 ◽  
Vol 538-541 ◽  
pp. 1611-1614
Author(s):  
Han Zhuo Zhang ◽  
Huiping Zhang ◽  
Lei Liu

Four types of Cu sheets, with average grain sizes of 200 nm, 90 nm, 33 nm and 11 nm respectively, were electrodeposited and tested by tension at both high and low strain rate. Typically, a higher strength with lower tensile ductility was obtained by increasing the strain rate or reducing the grain size till 33 nm. An inverse Hall-Petch result was found in 11 nm Cu, while 200 nm Cu exhibited an increase of both strength and plastic strain by the increment of strain rate. Tensile deformation mechanisms of the Cu sheets were also discussed with their microstructural features.


Carbon ◽  
2015 ◽  
Vol 85 ◽  
pp. 135-146 ◽  
Author(s):  
M.Q. Chen ◽  
S.S. Quek ◽  
Z.D. Sha ◽  
C.H. Chiu ◽  
Q.X. Pei ◽  
...  

1990 ◽  
Vol 213 ◽  
Author(s):  
D.F. Lahrman ◽  
R.D. Field ◽  
R. Darolia

ABSTRACTIn this study, the strain rate sensitivity of single crystal NiAl has been investigated by performing tensile tests as a function of temperature and two strain rates. Three crystallographic orientations, [100], [110], and [111] were studied. The tensile test results investigated include yield strength, work hardening rate and plastic strain to failure. The data are discussed in terms of deformation mechanisms in NiAl.


2005 ◽  
Vol 20 (11) ◽  
pp. 2955-2959 ◽  
Author(s):  
J. Chen ◽  
Y.N. Shi ◽  
K. Lu

Nanoindentation technique was used to measure the strain rate sensitivity (m) of a nanocrystalline Cu-Ni-P alloy prepared by means of electrodeposition. The m value decreases from 0.034 to 0.018 when the nominal grain size increases from 7 nm to 33 nm. Both m values of the alloy are obviously lower than those of the pure Cu with similar grain size, implying that P segregation at grain boundaries might play a key role in retarding grain boundary activities as compared to pure Cu samples.


2015 ◽  
Vol 17 (34) ◽  
pp. 21894-21901 ◽  
Author(s):  
Matthew Becton ◽  
Xianqiao Wang

Molecular dynamics simulations are performed to investigate the mechanical properties and failure mechanism of polycrystalline boron nitride sheet with various grain sizes.


2008 ◽  
Vol 139 ◽  
pp. 83-88 ◽  
Author(s):  
Zhi Liang Pan ◽  
Yu Long Li ◽  
Qiu Ming Wei

Using molecular dynamics (MD) simulation, we have investigated the mechanical properties and the microstructural evolution of nanocrystalline tantalum (NC-Ta, grain size from 3.25 nm to ~13.0 nm) under uniaxial tension. The results show the flow stress at a given offset strain decreases as the grain size is decreased within the grain size regime studied, implying an inverse Hall-Petch effect. A strain rate sensitivity of ~0.14, more than triple that of coarse-grain Ta, is derived from the simulation results. Twinning is regarded to be a secondary deformation mechanism based on the simulations. Similar to nanocrystalline iron, stress-induced phase transitions from body-centered cubic (BCC) to face-centered cubic (FCC) and hexagonal close-packed (HCP) structures take place locally during the deformation process, The maximum fraction of FCC atoms varies linearly with the tensile strength. We can thus conclude that a critical stress exists for the phase transition to occur. It is also observed that the higher the imposed strain rate, the further delayed is the phase transition. Such phase transitions are found to occur only at relatively low simulation temperatures, and are reversible with respect to stress.


Sign in / Sign up

Export Citation Format

Share Document