Graphene welded carbon nanotube crossbars for biaxial strain sensors

Carbon ◽  
2017 ◽  
Vol 123 ◽  
pp. 786-793 ◽  
Author(s):  
Jidong Shi ◽  
Jing Hu ◽  
Zhaohe Dai ◽  
Wei Zhao ◽  
Peng Liu ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Waris Obitayo ◽  
Tao Liu

The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.


2015 ◽  
Vol 24 (9) ◽  
pp. 095004 ◽  
Author(s):  
Ang Li ◽  
Alexander E Bogdanovich ◽  
Philip D Bradford

2017 ◽  
Vol 5 (42) ◽  
pp. 11092-11099 ◽  
Author(s):  
Qi Li ◽  
Jin Li ◽  
Danhquang Tran ◽  
Chengqiang Luo ◽  
Yang Gao ◽  
...  

Strain sensors based on a porous CNT/PDMS nanocomposite can detect a collection of human body motions and actuation of soft robotics.


2011 ◽  
Vol 22 (18) ◽  
pp. 2155-2159 ◽  
Author(s):  
Y. Miao ◽  
L. Chen ◽  
Y. Lin ◽  
R. Sammynaiken ◽  
W. J. Zhang

The use of carbon nanotubes (CNTs) for construction of sensors is promising. This is due to some unique characteristics of CNTs. In recent years, strain sensors built from CNT composite films have been developed; however, their low piezoresistive sensitivity (gauge factor (GF)) in in-plane strain detection is a concern compared with other strain sensors. This article reports an experimental discovery of the superior piezoresistive response of a CNT film that is free of surfactants, known as the pure CNT film. The mechanism for the high GF with the pure CNT film strain sensors is also discussed.


2018 ◽  
Vol 29 (23) ◽  
pp. 235501 ◽  
Author(s):  
Yang Gao ◽  
Xiaoliang Fang ◽  
Jianping Tan ◽  
Ting Lu ◽  
Likun Pan ◽  
...  

2018 ◽  
Vol 10 (43) ◽  
pp. 37760-37766 ◽  
Author(s):  
Sijia Chen ◽  
Rongyao Wu ◽  
Pei Li ◽  
Qi Li ◽  
Yang Gao ◽  
...  

2016 ◽  
Vol 11 (4) ◽  
pp. 155892501601100 ◽  
Author(s):  
Wei Liu ◽  
Fujun Xu ◽  
Nianhua Zhu ◽  
Shuang Wang

Carbon nano tube (CNT) yarn is an axially aligned CNT assembly. It has great potential many applications. In this study, the mechanical and electrical properties of the aerogel-spun CNT yarns and CNT/Polydimethylsiloxane (PDMS) composite yarns were investigated. The CNT/PDMS yarn was fabricated by droplet infiltration of PDMS solution into the aerogel-spun CNT yarn. The mechanical properties of the CNT/PDMS yarns were significantly improved with an average strength of 837.29 MPa and modulus of 3.66 GPa, over 100% improvement compared to the original CNT yarns. The electrical conductivity of the CNT/PDMS yarn increased from 1636 S/cm to 3555 S/cm. The electromechanical properties of CNT/PDMS yarns demonstrated that such CNT yarn could be suitable for strain sensors.


2020 ◽  
Vol 7 (3) ◽  
pp. 035006
Author(s):  
T Kumpika ◽  
E Kantarak ◽  
A Sriboonruang ◽  
W Sroila ◽  
P Tippo ◽  
...  

2020 ◽  
Vol 8 (18) ◽  
pp. 6185-6195 ◽  
Author(s):  
Mohammad Nankali ◽  
Norouz Mohammad Nouri ◽  
Mahdi Navidbakhsh ◽  
Nima Geran Malek ◽  
Mohammad Amin Amindehghan ◽  
...  

The impact of environmental parameters on the sensing behavior of carbon nanotube–elastomer nanocomposite strain sensors has been investigated, revealing significant effect of temperature and humidity variations on the sensing performance.


Nanoscale ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 5884-5890 ◽  
Author(s):  
Zuoli He ◽  
Gengheng Zhou ◽  
Joon-Hyung Byun ◽  
Sang-Kwan Lee ◽  
Moon-Kwang Um ◽  
...  

In this manuscript, we report a novel highly sensitive wearable strain sensor based on a highly stretchable multi-walled carbon nanotube (MWCNT)/Thermoplastic Polyurethane (TPU) fiber obtained via a wet spinning process.


Sign in / Sign up

Export Citation Format

Share Document