MicroRNA-1179 inhibits the proliferation, migration and invasion of human pancreatic cancer cells by targeting E2F5

2018 ◽  
Vol 291 ◽  
pp. 65-71 ◽  
Author(s):  
Chengjie Lin ◽  
Zhigao Hu ◽  
Guandou Yuan ◽  
Huizhao Su ◽  
Yonglian Zeng ◽  
...  
2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Xiao-ren Zhu ◽  
Shi-qing Peng ◽  
Le Wang ◽  
Xiao-yu Chen ◽  
Chun-xia Feng ◽  
...  

AbstractPancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.


2021 ◽  
Vol 16 (11) ◽  
pp. 1934578X2110576
Author(s):  
Ji Hye Jeong ◽  
Jae-Ha Ryu ◽  
Hwa Jin Lee

Several dietary and medicinal herbs have been shown to be effective in the treatment and prevention of cancer. Although Piper nigrum has been shown to have anti-cancer activities against various cancer cells, its anti-pancreatic cancer properties have not been reported. In the present study, P. nigrum extract (PNE) inhibited proliferation of PANC-1 human pancreatic cancer cells. Flow cytometry showed G0/G1 arrest caused by PNE in PANC-1 cells. In addition, Western blot analysis showed that PNE suppressed the protein levels of cell cycle regulators such as cyclin B1, cyclin D1, survivin, and Forkhead box M1 (FoxM1). These findings suggested that the inhibitory activity of PNE against the growth of PANC-1 cells was correlated with cell cycle arrest and repression of cell cycle regulators. Wound healing and trans-well assays showed that PNE suppressed migration and invasion of PANC-1 cells. Piperine, a major alkaloid of Piper nigrum, was identified as the main component of PNE by HPLC analysis. Piperine also attenuated the cell growth, migration, and invasion of PANC-1 cells, suggesting its contribution to the anti-pancreatic cancer effects of PNE. These results demonstrate that PNE and its major constituent, piperine, have anti-pancreatic cancer properties such as growth-inhibition, anti-migration, and anti-invasion of cancer cells.


2016 ◽  
Vol 102 ◽  
pp. 107-119 ◽  
Author(s):  
Io-Guané Rivera ◽  
Marta Ordoñez ◽  
Natalia Presa ◽  
Patricia Gangoiti ◽  
Ana Gomez-Larrauri ◽  
...  

2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yihui Sun ◽  
Jiaming Xie ◽  
Shang Cai ◽  
Qian Wang ◽  
Zhenyu Feng ◽  
...  

AbstractThe nuclear receptor-binding SET domain 3 (NSD3) catalyzes methylation of histone H3 at lysine 36 (H3K36), and promotes malignant transformation and progression of human cancer. Its expression, potential functions and underlying mechanisms in pancreatic cancer are studied. Bioinformatics studies and results from local human tissues show that NSD3 is upregulated in human pancreatic cancer tissues, which is correlated with poor overall survival. In primary and established pancreatic cancer cells, NSD3 silencing (by shRNAs) or CRISPR/Cas9-induced NSD3 knockout potently inhibited cell proliferation, migration and invasion, while provoking cell cycle arrest and apoptosis. Conversely, ectopic expression of NSD3-T1232A mutation significantly accelerated proliferation, migration, and invasion of pancreatic cancer cells. H3K36 dimethylation, expression of NSD3-dependent genes (Prkaa2, Myc, Irgm1, Adam12, and Notch3), and mTOR activation (S6K1 phosphorylation) were largely inhibited by NSD3 silencing or knockout. In vivo, intratumoral injection of adeno-associated virus (AAV)-packed NSD3 shRNA potently inhibited pancreatic cancer xenograft growth in nude mice. These results suggest that elevated NSD3 could be an important driver for the malignant progression of pancreatic cancer.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Xian-Ping Cui ◽  
Chuan-Xi Wang ◽  
Zhi-Yi Wang ◽  
Jian Li ◽  
Ya-Wen Tan ◽  
...  

Abstract LncRNA TP73 antisense RNA 1T (TP73-AS1) plays an important role in human malignancies. However, the levels of TP73-AS1 and its functional mechanisms in pancreatic cancer metastasis remain unknown, and the clinical significance of TP73-AS1 in human pancreatic cancer is also unclear. In the present study, the levels of TP73-AS1 and its candidate target miR-141 in pancreatic cancer and adjacent normal tissue were detected using qRT-PCR. The association between TP73-AS1 levels and the clinicopathologic characteristics of pancreatic cancer patients were analyzed. The relationship between TP73-AS1 and miR-141, and miR-141 and its candidate target 3-hydroxybutyrate dehydrogenase type 2 (BDH2) was confirmed using dual-luciferase reporter assays. TP73-AS1 and/or miR-141 were knocked down using siRNA or an inhibitor in pancreatic cancer cells and cell migration and invasion then examined. The results showed that TP73-AS1 was up-regulated in pancreatic cancer tissue and cell lines. High levels of TP73-AS1 were correlated with poor clinicopathological characteristics and shorter overall survival. MiR-141 was a direct target for TP73-AS1, while BDH2 was a direct target for miR-141. The knockdown of TP73-AS1 significantly inhibited the migration and invasion of pancreatic cancer cells, while the miR-141 inhibitor significantly restored the migration and invasion. Therefore, TP73-AS1 positively regulated BDH2 expression by sponging miR-141. These findings suggest that TP73-AS1 serves as an oncogene and promotes the metastasis of pancreatic cancer. Moreover, TP73-AS1 could serve as a predictor and a potential drug biotarget for pancreatic cancer.


2014 ◽  
Vol 69 (3) ◽  
pp. 487-494 ◽  
Author(s):  
Yang Wang ◽  
Dong Wei Su ◽  
Li Gao ◽  
Gui Ling Ding ◽  
Can Rong Ni ◽  
...  

2013 ◽  
Vol 54 (3) ◽  
pp. 203-215 ◽  
Author(s):  
Noah P. Zimmerman ◽  
Ishan Roy ◽  
Andrew D. Hauser ◽  
Jessica M. Wilson ◽  
Carol L. Williams ◽  
...  

2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document