In Vitro Inhibition of Piper nigrum and Piperine on Growth, Migration, and Invasion of PANC-1 Human Pancreatic Cancer Cells

2021 ◽  
Vol 16 (11) ◽  
pp. 1934578X2110576
Author(s):  
Ji Hye Jeong ◽  
Jae-Ha Ryu ◽  
Hwa Jin Lee

Several dietary and medicinal herbs have been shown to be effective in the treatment and prevention of cancer. Although Piper nigrum has been shown to have anti-cancer activities against various cancer cells, its anti-pancreatic cancer properties have not been reported. In the present study, P. nigrum extract (PNE) inhibited proliferation of PANC-1 human pancreatic cancer cells. Flow cytometry showed G0/G1 arrest caused by PNE in PANC-1 cells. In addition, Western blot analysis showed that PNE suppressed the protein levels of cell cycle regulators such as cyclin B1, cyclin D1, survivin, and Forkhead box M1 (FoxM1). These findings suggested that the inhibitory activity of PNE against the growth of PANC-1 cells was correlated with cell cycle arrest and repression of cell cycle regulators. Wound healing and trans-well assays showed that PNE suppressed migration and invasion of PANC-1 cells. Piperine, a major alkaloid of Piper nigrum, was identified as the main component of PNE by HPLC analysis. Piperine also attenuated the cell growth, migration, and invasion of PANC-1 cells, suggesting its contribution to the anti-pancreatic cancer effects of PNE. These results demonstrate that PNE and its major constituent, piperine, have anti-pancreatic cancer properties such as growth-inhibition, anti-migration, and anti-invasion of cancer cells.

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
Concetta Panebianco ◽  
Nadia Trivieri ◽  
Annacandida Villani ◽  
Fulvia Terracciano ◽  
Tiziana Pia Latiano ◽  
...  

Chemoresistance is a major problem in the therapeutic management of pancreatic cancer, concurring to poor clinical outcome. A number of mechanisms have been proposed to explain resistance to gemcitabine, a standard of care for this malignancy, among which is included aberrant miRNA expression. In the current study, we investigated the role of miR-217, which is strongly down-regulated in cancerous, compared to normal, pancreatic tissues or cells, in sensitizing human pancreatic cancer cell lines to this drug. The low expression of miR-217 in pancreatic cancer patients was confirmed in two gene expression datasets (GSE41372 and GSE60980), and the prognostic value of two target genes (ANLN and TRPS1), was estimated on clinical data from the Tumor Cancer Genome Atlas (TCGA). Transfecting miR-217 mimic in pancreatic cancer cells reduced viability, enhanced apoptosis, and affected cell cycle by promoting a S phase arrest in gemcitabine-treated cells. Moreover, in drug-exposed cells subjected to miR-217 forced expression, a down-regulation for several genes involved in cancer drug resistance was observed, many of which are cell cycle regulators, such as CCND1, CCNE1, CDK2, CDKN1A, CDKN1B, while others, such as ARNT, BRCA1, BRCA2, ELK1, EGFR, ERBB4, and RARA are involved in proliferation and cell cycle progression. Our results support the notion that miR-217 enhances pancreatic cancer sensitivity to gemcitabine, mainly impairing cell cycle progression.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Xiao-ren Zhu ◽  
Shi-qing Peng ◽  
Le Wang ◽  
Xiao-yu Chen ◽  
Chun-xia Feng ◽  
...  

AbstractPancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.


2018 ◽  
Vol 291 ◽  
pp. 65-71 ◽  
Author(s):  
Chengjie Lin ◽  
Zhigao Hu ◽  
Guandou Yuan ◽  
Huizhao Su ◽  
Yonglian Zeng ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2328
Author(s):  
Ji Hye Jeong ◽  
Jae-Ha Ryu

Pancreatic cancer has a high mortality rate due to poor rates of early diagnosis. One tumor suppressor gene in particular, p53, is frequently mutated in pancreatic cancer, and mutations in p53 can inactivate normal wild type p53 activity and increase expression of transcription factor forkhead box M1 (FoxM1). Overexpression of FoxM1 accelerates cellular proliferation and cancer progression. Therefore, inhibition of FoxM1 represents a therapeutic strategy for treating pancreatic cancer. Broussoflavonol B (BF-B), isolated from the stem bark of Broussonetia kazinoki Siebold has previously been shown to inhibit the growth of breast cancer cells. This study aimed to investigate whether BF-B exhibits anti-pancreatic cancer activity and if so, identify the underlying mechanism. BF-B reduced cell proliferation, induced cell cycle arrest, and inhibited cell migration and invasion of human pancreatic cancer PANC-1 cells (p53 mutated). Interestingly, BF-B down-regulated FoxM1 expression at both the mRNA and protein level. It also suppressed the expression of FoxM1 downstream target genes, such as cyclin D1, cyclin B1, and survivin. Cell cycle analysis showed that BF-B induced the arrest of G0/G1 phase. BF-B reduced the phosphorylation of extracellular signal-regulated kinase ½ (ERK½) and expression of ERK½ downstream effector c-Myc, which regulates cell proliferation. Furthermore, BF-B inhibited cell migration and invasion, which are downstream functional properties of FoxM1. These results suggested that BF-B could repress pancreatic cancer cell proliferation by inactivation of the ERK/c-Myc/FoxM1 signaling pathway. Broussoflavonol B from Broussonetia kazinoki Siebold may represent a novel chemo-therapeutic agent for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document