Could the extent of cell division, cell expansion and endoreduplication in a leaf be controlled by leaf expansion itself?

Author(s):  
Christine Granier ◽  
Sébastien Tisné ◽  
Catherine Massonnet ◽  
Juliette Fabre ◽  
Nathalie Wuyts ◽  
...  
2009 ◽  
Vol 36 (7) ◽  
pp. 654 ◽  
Author(s):  
Andrzej Stefan Czech ◽  
Kazimierz Strzałka ◽  
Ulrich Schurr ◽  
Shizue Matsubara

Chlorophyll (Chl) accumulation and leaf growth were analysed in delayed-greening leaves of Theobroma cacao (L.) to examine whether these parameters are correlated during leaf development and can be used as non-destructive indicators of leaf developmental stages. There was a clear correlation between Chl content and leaf relative growth rate (RGR) and between Chl content and percentage of full leaf expansion (%FLE) under different growth conditions. Five distinct developmental phases were defined according to the correlation between these parameters and corroborated by data from the analyses of leaf growth (epidermal cell size and specific leaf area) or photosynthetic properties (maximal PSII efficiency, CO2 assimilation and non-structural carbohydrate contents). The five phases were characterised by rapid leaf expansion by cell division (I), pronounced cell expansion (II), development of photosynthetic capacity concomitant with reinforcement of leaf structure (III), and maturation (IV and V). The transition from cell division to cell expansion happened uniformly across the leaf lamina between phase I and II; the sink-to-source transition was found between phase III and IV. These results demonstrate coordinated development of photosynthetic machinery and leaf structure in delayed-greening leaves and provide a simple and non-invasive method for estimation of leaf developmental stages in T. cacao.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1332
Author(s):  
Alessandro Carella ◽  
Giuseppe Gianguzzi ◽  
Alessio Scalisi ◽  
Vittorio Farina ◽  
Paolo Inglese ◽  
...  

Studying mango (Mangifera indica L.) fruit development represents one of the most important aspects for the precise orchard management under non-native environmental conditions. In this work, precision fruit gauges were used to investigate important eco-physiological aspects of fruit growth in two mango cultivars, Keitt (late ripening) and Tommy Atkins (early-mid ripening). Fruit absolute growth rate (AGR, mm day−1), daily diameter fluctuation (ΔD, mm), and a development index given by their ratio (AGR/ΔD) were monitored to identify the prevalent mechanism (cell division, cell expansion, ripening) involved in fruit development in three (‘Tommy Atkins’) or four (‘Keitt’) different periods during growth. In ‘Keitt’, cell division prevailed over cell expansion from 58 to 64 days after full bloom (DAFB), while the opposite occurred from 74 to 85 DAFB. Starting at 100 DAFB, internal changes prevailed over fruit growth, indicating the beginning of the ripening stage. In Tommy Atkins (an early ripening cultivar), no significant differences in AGR/ΔD was found among monitoring periods, indicating that both cell division and expansion coexisted at gradually decreasing rates until fruit harvest. To evaluate the effect of microclimate on fruit growth the relationship between vapor pressure deficit (VPD) and ΔD was also studied. In ‘Keitt’, VPD was the main driving force determining fruit diameter fluctuations. In ‘Tommy Atkins’, the lack of relationship between VPD and ΔD suggest a hydric isolation of the fruit due to the disruption of xylem and stomatal flows starting at 65 DAFB. Further studies are needed to confirm this hypothesis.


Development ◽  
1972 ◽  
Vol 27 (1) ◽  
pp. 245-260
Author(s):  
D. A. Ede ◽  
O. P. Flint

Aggregates were prepared from dissociated mesenchyme cells obtained from normal and talpid mutant chick limb buds at stage 26 and were maintained for 4 days in culture. They were shown by autoradiographic techniques to consist initially of populations of unifoimly dedifferentiated cells within which chondrogenesis was initiated between 1 and 2 days, leading to the formation of areas of precartilage in the interior of the aggregates. Measurements of cell population density, cell death and cell division were made in precartilage and non-cartilage regions on sections prepared from normal and mutant aggregates fixed at 1-day intervals and were related to the pattern of chondrogenesis. Non-cartilage areas consisted of cells surrounding the precartilage areas and extended to the surface of the aggregate; these cells showed no special pattern or histochemical reaction. Precartilage areas consisted of one or more “;condensations”, comprising cells arranged in concentric rings around a central cell or group of cells, characterized by uptake of [35S]sulphate and taking up alcian blue stain in the intercellular matrix. Chondrogenesis was initiated al the condensation foci and spread centrifugally. Condensations were arranged in a simple pattern, roughly equidistantly from each other and never at the surface of the aggregate. The shape and arrangement of the cells comprising them suggested that they were formed by a process of aggregation towards the condensation foci. The relation of these observations to events in the intact limb bud developing in vivo is discussed.


Sign in / Sign up

Export Citation Format

Share Document