The effect of nonylphenol exposure on the stimulation of melanomacrophage centers, estrogen and testosterone level, and ERα gene expression in goldfish

Author(s):  
Rashid Alijani Ardeshir ◽  
Sara Rastgar ◽  
Amir Parviz Salati ◽  
Ebrahim Zabihi ◽  
Abdolali Movahedinia ◽  
...  
1991 ◽  
Vol 266 (34) ◽  
pp. 23251-23256
Author(s):  
F.J. Oliver ◽  
G. de la Rubia ◽  
E.P. Feener ◽  
M.E. Lee ◽  
M.R. Loeken ◽  
...  

1993 ◽  
Vol 13 (3) ◽  
pp. 1719-1727
Author(s):  
C S Suen ◽  
W W Chin

The expression of the rat growth hormone (rGH) gene in the anterior pituitary gland is modulated by Pit-1/GHF-1, a pituitary-specific transcription factor, and by other more widely distributed factors, such as the thyroid hormone receptors (TRs), Sp1, and the glucocorticoid receptor. Thyroid hormone (T3)-mediated transcriptional stimulation of rGH gene expression has been extensively studied in vivo and in vitro including the measurements of (i) rGH mRNA by blot hybridization, (ii) transcriptional rate of rGH gene by nuclear run-on, and (iii) reporter gene expression in which a chimeric plasmid containing 5'-flanking sequences of the rGH gene linked to a reporter gene has been transfected either stably or transiently into pituitary and/or nonpituitary cells. From these studies, it has been suggested that the Pit-1/GHF-1 binding site is necessary for full T3 action. We developed a cell-free in vitro transcription system to examine further the roles of the TRs and Pit-1/GHF-1 in rGH gene activation. Using GH3 nuclear extract as a source of TRs and Pit-1/GHF-1, this in vitro transcription assay showed that T3 stimulation of rGH promoter activity is dependent on the addition of T3 to the GH3 nuclear extract. This transcriptional stimulation was augmented with increasing concentrations of ligand and was T3, but not T4 or reverse T3, specific. T3-mediated stimulation of rGH promoter activity was completely abolished by preincubation of the nuclear extract with rGH-thyroid hormone response element (-200 to -160) but not with Pit-1/GHF-1 (-137 to -65) oligonucleotides. Further, neither deletion of both Pit-1/GHF-1 binding sites nor mutation of the proximal Pit-1/GHF-1 binding site from the rGH promoter abrogated the T3 effect. These results provide evidence that T3-stimulated rGH promoter activity is independent of Pit-1/GHF-1 and raise the possibility that the stimulation of rGH gene expression by T3 might involve direct interaction of TRs with the general transcriptional apparatus.


1999 ◽  
Vol 276 (6) ◽  
pp. G1363-G1372 ◽  
Author(s):  
Vinzenz M. Stepan ◽  
Chris J. Dickinson ◽  
John del Valle ◽  
Masashi Matsushima ◽  
Andrea Todisco

Gastrin (G17) has a CCKBreceptor-mediated growth-promoting effect on the AR42J rat acinar cell line that is linked to induction of both mitogen-activated protein kinase (MAPK) and c- fos gene expression. We investigated the mechanisms that regulate the growth factor action of G17 on the rat pituitary adenoma cell line GH3. Both AR42J and GH3cells displayed equal levels of CCKBreceptor expression and similar binding kinetics of125I-labeled G17. G17 stimulation of cell proliferation was identical in both cell lines. G17 stimulation of GH3cell proliferation was completely blocked by the CCKBreceptor antagonist D2 but not by the MEK inhibitor PD-98059 or the protein kinase C inhibitor GF-109203X, which completely inhibited G17 induction of AR42J cell proliferation. G17 induced a c- fos SRE-luciferase reporter gene plasmid more than fourfold in the AR42J cells, whereas it had no effect in the GH3cells. In contrast to what we observed in the AR42J cells, G17 failed to stimulate MAPK activation and Shc tyrosyl phosphorylation and association with the adapter protein Grb2. Epidermal growth factor induced the MAPK pathway in the GH3cells, demonstrating the integrity of this signaling system. G17 induced Ca2+mobilization in both the GH3and AR42J cells. The calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide inhibited AR42J cell proliferation by 20%, whereas it completely blocked G17 induction of GH3cell growth. The Ca2+ionophore ionomycin stimulated GH3cell proliferation to a level similar to that observed in response to G17, but it had no effect on AR42J cell proliferation. Thus there are cell type specific differences in the requirement of the MAPK pathway for the growth factor action of G17. Whereas in the AR42J cells G17 stimulates cell growth through activation of MAPK and c- fos gene expression, in the GH3cells, G17 fails to activate MAPK, and it induces cell proliferation through Ca2+-dependent signaling pathways. Furthermore, induction of Ca2+mobilization in the AR42J cells appears not to be sufficient to sustain cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document