Whole genome sequencing identifies a de novo 2.1 Mb balanced paracentric inversion disrupting FOXP1 and leading to severe intellectual disability

2018 ◽  
Vol 485 ◽  
pp. 218-223 ◽  
Author(s):  
M.-L. Vuillaume ◽  
B. Cogné ◽  
M. Jeanne ◽  
A. Boland ◽  
D.-C. Ung ◽  
...  
Author(s):  
Dang Nguyen ◽  
Hai Nguyen ◽  
Thuy Nguyen ◽  
Thi Nguyen ◽  
Kaoru Nakano ◽  
...  

Although it has been a half-century since dioxin-contaminated herbicides were used to defoliate the landscape during the Vietnam War, dioxin contamination “hotspots” still remain in Vietnam. Environmental and health impacts of these hotspots need to be evaluated. Intellectual disability (ID) is one of the diseases found in the children of people exposed to the herbicides. This study aims to identify genetic alterations of a patient whose family lived in a dioxin hotspot. The patient’s father had a highly elevated dioxin concentration. He was affected with undiagnosed moderate ID. To analyze de novo mutations and genetic variations, and to identify causal gene(s) for ID, we performed whole genome sequencing (WGS) of the proband and his parents. Two de novo missense mutations were detected, each one in ETS2 and ZNF408 genes, respectively. Compound heterozygosity was identified in CENPF and TTN genes. Existing knowledge on the genes and bioinformatics analyses suggest that EST2, ZNF408, and CENPF might be promising candidates for ID causative genes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brent S. Pedersen ◽  
Joe M. Brown ◽  
Harriet Dashnow ◽  
Amelia D. Wallace ◽  
Matt Velinder ◽  
...  

AbstractIn studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253440
Author(s):  
Samantha Gunasekera ◽  
Sam Abraham ◽  
Marc Stegger ◽  
Stanley Pang ◽  
Penghao Wang ◽  
...  

Whole-genome sequencing is essential to many facets of infectious disease research. However, technical limitations such as bias in coverage and tagmentation, and difficulties characterising genomic regions with extreme GC content have created significant obstacles in its use. Illumina has claimed that the recently released DNA Prep library preparation kit, formerly known as Nextera Flex, overcomes some of these limitations. This study aimed to assess bias in coverage, tagmentation, GC content, average fragment size distribution, and de novo assembly quality using both the Nextera XT and DNA Prep kits from Illumina. When performing whole-genome sequencing on Escherichia coli and where coverage bias is the main concern, the DNA Prep kit may provide higher quality results; though de novo assembly quality, tagmentation bias and GC content related bias are unlikely to improve. Based on these results, laboratories with existing workflows based on Nextera XT would see minor benefits in transitioning to the DNA Prep kit if they were primarily studying organisms with neutral GC content.


2020 ◽  
Vol 29 (1) ◽  
pp. 184-193 ◽  
Author(s):  
Jonas Carlsson Almlöf ◽  
Sara Nystedt ◽  
Aikaterini Mechtidou ◽  
Dag Leonard ◽  
Maija-Leena Eloranta ◽  
...  

AbstractBy performing whole-genome sequencing in a Swedish cohort of 71 parent-offspring trios, in which the child in each family is affected by systemic lupus erythematosus (SLE, OMIM 152700), we investigated the contribution of de novo variants to risk of SLE. We found de novo single nucleotide variants (SNVs) to be significantly enriched in gene promoters in SLE patients compared with healthy controls at a level corresponding to 26 de novo promoter SNVs more in each patient than expected. We identified 12 de novo SNVs in promoter regions of genes that have been previously implicated in SLE, or that have functions that could be of relevance to SLE. Furthermore, we detected three missense de novo SNVs, five de novo insertion-deletions, and three de novo structural variants with potential to affect the expression of genes that are relevant for SLE. Based on enrichment analysis, disease-affecting de novo SNVs are expected to occur in one-third of SLE patients. This study shows that de novo variants in promoters commonly contribute to the genetic risk of SLE. The fact that de novo SNVs in SLE were enriched to promoter regions highlights the importance of using whole-genome sequencing for identification of de novo variants.


2018 ◽  
Author(s):  
Ann-Charlotte Thuresson ◽  
Cecilia Soussi Zander ◽  
Jin J. Zhao ◽  
Jonatan Halvardson ◽  
Khurram Maqbool ◽  
...  

BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanliang Jiang ◽  
Jianguo Lu ◽  
Eric Peatman ◽  
Huseyin Kucuktas ◽  
Shikai Liu ◽  
...  

2015 ◽  
Vol 25 (3) ◽  
pp. 426-434 ◽  
Author(s):  
Brock A. Peters ◽  
Bahram G. Kermani ◽  
Oleg Alferov ◽  
Misha R. Agarwal ◽  
Mark A. McElwain ◽  
...  

2015 ◽  
Vol 68 (10) ◽  
pp. 835-838 ◽  
Author(s):  
Björn A Espedido ◽  
Borce Dimitrijovski ◽  
Sebastiaan J van Hal ◽  
Slade O Jensen

AimsTo characterise the resistome of a multi-drug resistant Klebsiella pneumoniae (Kp0003) isolated from an Australian traveller who was repatriated to a Sydney Metropolitan Hospital from Myanmar with possible prosthetic aortic valve infective endocarditis.MethodsKp0003 was recovered from a blood culture of the patient and whole genome sequencing was performed. Read mapping and de novo assembly of reads facilitated in silico multi-locus sequence and plasmid replicon typing as well as the characterisation of antibiotic resistance genes and their genetic context. Conjugation experiments were also performed to assess the plasmid (and resistance gene) transferability and the effect on the antibiotic resistance phenotype.ResultsImportantly, and of particular concern, the carbapenem-hydrolysing β-lactamase gene blaNDM-4 was identified on a conjugative IncX3 plasmid (pJEG027). In this respect, the blaNDM-4 genetic context is similar (at least to some extent) to what has previously been identified for blaNDM-1 and blaNDM-4-like variants.ConclusionsThis study highlights the potential role that IncX3 plasmids have played in the emergence and dissemination of blaNDM-4-like variants worldwide and emphasises the importance of resistance gene surveillance.


Cell ◽  
2012 ◽  
Vol 151 (7) ◽  
pp. 1431-1442 ◽  
Author(s):  
Jacob J. Michaelson ◽  
Yujian Shi ◽  
Madhusudan Gujral ◽  
Hancheng Zheng ◽  
Dheeraj Malhotra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document