Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy

2004 ◽  
Vol 248 (3-4) ◽  
pp. 321-350 ◽  
Author(s):  
K. Lang ◽  
J. Mosinger ◽  
D.M. Wagnerová
2018 ◽  
Vol 9 ◽  
pp. 2960-2967 ◽  
Author(s):  
Jan Hynek ◽  
Sebastian Jurík ◽  
Martina Koncošová ◽  
Jaroslav Zelenka ◽  
Ivana Křížová ◽  
...  

Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.


2009 ◽  
Vol 62 (5) ◽  
pp. 425 ◽  
Author(s):  
Petr Zimcik ◽  
Miroslav Miletin ◽  
Veronika Novakova ◽  
Kamil Kopecky ◽  
Marcela Nejedla ◽  
...  

In this work we present a rational design of the active part of third generation photosensitizers for photodynamic therapy based on phthalocyanine and an azaphthalocyanine core. The preferred zinc complexes of the AAAB type that contain bulky tert-butylsulfanyl substituents (A) and one carboxy group (B) have been synthesized by statistical condensation and fully characterized. The tetramerization was performed using magnesium(ii) butoxide followed by demetalation and insertion of ZnII. Compound 1 synthesized from 4,5-bis(tert-butylsulfanyl)phthalonitrile (A) and 2,3-dicyanoquinoxaline-6-carboxylic acid (B) exerted very promising photophysical properties (Q-band absorption at 726 nm, ϵ = 140000 M–1 cm–1), which allowed strong absorption of light at long wavelengths where the penetration of the light through human tissues is deeper. The very high singlet oxygen quantum yield of 1 (ΦΔ = 0.80) assures efficient photosensitization. As a result of bulky peripheral substituents, compound 1 shows good solubility in organic solvents with a low degree of aggregation, which makes it potentially viable for non-complicated modification. One carboxy group in the final structure of 1 allows simple binding to possible carriers. This compound is suitable for binding to targeting moieties to form the highly active part of a third-generation photosensitizer.


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1542-1550
Author(s):  
Nagihan Kocaağa ◽  
Öznur Dülger Kutlu ◽  
Ali Erdoğmuş

In this study, the synthesis and characterization of mono-(phthalocyaninato) lutetium(III) (1-Cl and 1-F) [Lu[Formula: see text](AcO)(Pc)] (Pc [Formula: see text] phthalocyaninato, AcO [Formula: see text] acetate) and bis-(phthalocyaninato) lutetium(III) (2-Cl and 2-Br) [Lu[Formula: see text]Pc[Formula: see text]] bearing halogenated (F, Cl and Br) phenoxy–phenoxy groups are described and verified by IR, [Formula: see text]H-NMR, UV-vis and mass spectrometry. Photochemical and photophysical properties of 1-F, 1-Cl 2-Cl and 2-Br in DMSO are also presented. A comparison between photophysical and photochemical parameters of mono and bis derivatives showed that mono phthalocyanines are better photosensitizers than bis phthalocyanines. Photophysical and photochemical properties of phthalocyanines are very useful for photodynamic therapy applications. Singlet oxygen quantum yields [Formula: see text] give an indication of the potential of the complexes as photosensitizers in photodynamic therapy applications. The chloro, fluoro, bromo-phenoxy–phenoxy substituted mono-(phthalocyaninato) lutetium(III) complexes (1-Cl and 1-F) gave good singlet oxygen quantum yields (from 0.86 to 0.80) in DMSO. Thus, these complexes show potential as Type II photosensitizers for PDT of cancer.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1432
Author(s):  
Laure Lichon ◽  
Clément Kotras ◽  
Bauyrzhan Myrzakhmetov ◽  
Philippe Arnoux ◽  
Morgane Daurat ◽  
...  

In this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media. These polymers are also fluorescent, allowing one to visualize their intracellular location through confocal microscopy. The most promising polymers were then used as vectors for siRNA delivery. Due to their cationic and amphipathic features, these polymers were found to effectively self-assemble with siRNA targeting the luciferase gene and deliver it in MDA-MB-231 cancer cells expressing luciferase, leading to 30–50% of the gene-silencing effect. In parallel, the photodynamic therapy (PDT) activity of these cationic polymers was restored after siRNA delivery, demonstrating their potential for combined PDT and gene therapy.


2017 ◽  
Vol 21 (04-06) ◽  
pp. 431-438 ◽  
Author(s):  
Bokolombe P. Ngoy ◽  
Nthabeleng Molupe ◽  
Jessica Harris ◽  
Gertrude Fomo ◽  
John Mack ◽  
...  

A series of novel 2,6-dibrominated BODIPY dyes with styryl groups at the 3,5-positions has been prepared, and their photophysical properties have been analyzed to assess their potential utility for use as photosensitizers in photodynamic therapy and in bioimaging.


1990 ◽  
Vol 52 (4) ◽  
pp. 741-744 ◽  
Author(s):  
G. Schermann ◽  
R. Schmidt ◽  
A. Völcker ◽  
H.-D. Brauer ◽  
H. Mertes ◽  
...  

2015 ◽  
Vol 21 (41) ◽  
pp. 14440-14446 ◽  
Author(s):  
Noureen Siraj ◽  
Paulina E. Kolic ◽  
Bishnu P. Regmi ◽  
Isiah M. Warner

Sign in / Sign up

Export Citation Format

Share Document