Near-infrared II emissive metal clusters: From atom physics to biomedicine

2021 ◽  
Vol 448 ◽  
pp. 214184
Author(s):  
Huizhen Ma ◽  
Junying Wang ◽  
Xiao-Dong Zhang
Keyword(s):  
2000 ◽  
Vol 636 ◽  
Author(s):  
Tetsuya Tada ◽  
Vladimir V. Poborchii ◽  
Toshihiko Kanayama

AbstractWe developed a fabrication process of regular arrays of Si nanopillars using self-formation of etching masks with metal clusters as formation nuclei. When Si substrates deposited with metal clusters are subjected to electron cyclotron plasma etching with SF6 at around -130 °C, reaction products in the plasma, SxFy, condense preferentially at the clusters, leading to the self-formation of nanoscale etching masks. As a result, Si pillars, about 10 nm in diameter and 100 nm tall, are formed with remarkably narrow size-distributions when Au clusters of 1-3 nm diameter are used. This method can be easily combined with electron beam lithography technique, which enables us to define pillar positions. Using this process, we have fabricated 2 dimensional photonic crystals (square and triangular lattices of Si nanopillars) with photonic band gaps in the visible and near infrared regions. We measured reflection spectra of the photonic crystals and observed polarization-dependent reflection bands in the wavelength range consistent with theoretical calculations.


Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7875-7887 ◽  
Author(s):  
Ying Lan ◽  
Xiaohui Zhu ◽  
Ming Tang ◽  
Yihan Wu ◽  
Jing Zhang ◽  
...  

A near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs) is developed in order to overcome the hypoxia-associated resistance in photodynamic therapy by photo-release of NO upon NIR illumination.


2020 ◽  
Vol 56 (43) ◽  
pp. 5819-5822
Author(s):  
Jing Zheng ◽  
Yongzhuo Liu ◽  
Fengling Song ◽  
Long Jiao ◽  
Yingnan Wu ◽  
...  

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Polymer News ◽  
2005 ◽  
Vol 30 (9) ◽  
pp. 296-300
Author(s):  
F. Esposito ◽  
V. Casuscelli ◽  
M. V. Volpe ◽  
G. Carotenuto ◽  
L. Nicolais

Sign in / Sign up

Export Citation Format

Share Document