scholarly journals Effect of type 2 diabetic serum on the behavior of Wharton's jelly-derived mesenchymal stem cells in vitro

2017 ◽  
Vol 3 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Fatima Ali ◽  
Fehmina Aziz ◽  
Nadia Wajid
Author(s):  
T.R. Sreekumar ◽  
S. Eswari ◽  
K. Vijayarani

Background: The prospect of mesenchymal stem cells (MSCs) as an adult stem cell source for neuronal tissue regeneration via their ability to differentiate into neurons has generated considerable excitement in regenerative cell therapy.Methods: In this study, we isolated ovine Wharton’s jelly derived MSCs and expanded in vitro in adherent culture. After the characterisation of MSCs using specific markers, we analysed the culture morphology of MSCs differentiated into neurons by a two-step chemical-based induction protocols involving a pre-induction step and a direct one step chemical-based induction protocol. Morphological changes after induction were evaluated.Result: In both the methods, after neuronal induction, the cells displayed phenotypic characteristic of neurons and comparatively less cytotoxicity was observed in the direct induction method. This study confirmed the possibility of generating neuron like cells from ovine WJ-MSCs and thereby exploring the potential of MSCs as therapeutic tool for treating neurological disorders in Veterinary Medicine.


2019 ◽  
Vol 20 (18) ◽  
pp. 4351
Author(s):  
Renata Szydlak ◽  
Marcin Majka ◽  
Małgorzata Lekka ◽  
Marta Kot ◽  
Piotr Laidler

Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are multipotent stem cells that can be used in regenerative medicine. However, to reach the high therapeutic efficacy of WJ-MSCs, it is necessary to obtain a large amount of MSCs, which requires their extensive in vitro culturing. Numerous studies have shown that in vitro expansion of MSCs can lead to changes in cell behavior; cells lose their ability to proliferate, differentiate and migrate. One of the important measures of cells’ migration potential is their elasticity, determined by atomic force microscopy (AFM) and quantified by Young’s modulus. This work describes the elasticity of WJ-MSCs during in vitro cultivation. To identify the properties that enable transmigration, the deformability of WJ-MSCs that were able to migrate across the endothelial monolayer or Matrigel was analyzed by AFM. We showed that WJ-MSCs displayed differences in deformability during in vitro cultivation. This phenomenon seems to be strongly correlated with the organization of F-actin and reflects the changes characteristic for stem cell maturation. Furthermore, the results confirm the relationship between the deformability of WJ-MSCs and their migration potential and suggest the use of Young’s modulus as one of the measures of competency of MSCs with respect to their possible use in therapy.


2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
Peng Huang ◽  
Li Min Lin ◽  
Xiao Ying Wu ◽  
Qiu Ling Tang ◽  
Xue Yong Feng ◽  
...  

2016 ◽  
Vol 12 (3) ◽  
pp. 1857-1866 ◽  
Author(s):  
Jianxia Hu ◽  
Yangang Wang ◽  
Huimin Gong ◽  
Chundong Yu ◽  
Caihong Guo ◽  
...  

2012 ◽  
Vol 22 (4) ◽  
pp. 243-254 ◽  
Author(s):  
Talar Margossian ◽  
Loic Reppel ◽  
Nehman Makdissy ◽  
Jean-François Stoltz ◽  
Danièle Bensoussan ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1448
Author(s):  
Maria Camilla Ciardulli ◽  
Joseph Lovecchio ◽  
Pasqualina Scala ◽  
Erwin Pavel Lamparelli ◽  
Tina Patricia Dale ◽  
...  

The present work described a bio-functionalized 3D fibrous construct, as an interactive teno-inductive graft model to study tenogenic potential events of human mesenchymal stem cells collected from Wharton’s Jelly (hWJ-MSCs). The 3D-biomimetic and bioresorbable scaffold was functionalized with nanocarriers for the local controlled delivery of a teno-inductive factor, i.e., the human Growth Differentiation factor 5 (hGDF-5). Significant results in terms of gene expression were obtained. Namely, the up-regulation of Scleraxis (350-fold, p ≤ 0.05), type I Collagen (8-fold), Decorin (2.5-fold), and Tenascin-C (1.3-fold) was detected at day 14; on the other hand, when hGDF-5 was supplemented in the external medium only (in absence of nanocarriers), a limited effect on gene expression was evident. Teno-inductive environment also induced pro-inflammatory, (IL-6 (1.6-fold), TNF (45-fold, p ≤ 0.001), and IL-12A (1.4-fold)), and anti-inflammatory (IL-10 (120-fold) and TGF-β1 (1.8-fold)) cytokine expression upregulation at day 14. The presented 3D construct opens perspectives for the study of drug controlled delivery devices to promote teno-regenerative events.


Sign in / Sign up

Export Citation Format

Share Document