Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process

2016 ◽  
Vol 303 ◽  
pp. 458-466 ◽  
Author(s):  
Li Zhao ◽  
Yuefei Ji ◽  
Deyang Kong ◽  
Junhe Lu ◽  
Quansuo Zhou ◽  
...  
Author(s):  
Yingming Guo ◽  
Ben Ma ◽  
Jianxiong Huang ◽  
Jing Yang ◽  
Ruifeng Zhang

Abstract The iron and manganese oxide filter film (MeOx) were used to research the simultaneous removal of bisphenol A (BPA), manganese (Mn2+) and ammonium (NH4+) in a pilot-scale filter system. We found that 0.52 mg/L of BPA could be removed while consuming 5.44 mg/L of dissolved oxygen (DO). Since the oxidation process of NH4+ and BPA both consume the DO in water, the presence of NH4+ can hinder the removal of BPA. The presence of Mn2+ in water had a synergy effect on the BPA removal. The filter film was characterized by SEM, XRD and XPS. Some substances were generated to block the pores of the oxide film, and a small amount of film was found to crack and fall off. The elemental composition of C and O were both increased by about 9%, the composition of Mn was decreased from 63.48% to 44.55%, and the reduced manganese substance might affect the activity of the oxide film. The main chemical forms of MeOx are Mn6O12·3H2O, MnFe2O4 or Mn3O4. The decrease in the removal efficiency of BPA was mainly due to the C-containing intermediate [−CH2C − H(OH)]n covering the surface of the oxide film and blocking the pore size of the film.


2019 ◽  
Vol 80 (3) ◽  
pp. 563-574 ◽  
Author(s):  
Feng Ding ◽  
Yong Xie ◽  
Tengyan Wu ◽  
Na Liu

Abstract This study was conducted to evaluate the influence of chloride ions (Cl−) on organic contaminants decolorization by the Fe0-activated persulfate process (PS/Fe0), as well as the generation of transformation products. Orange II (OII) was chosen as the target pollution. The results indicated that Cl− influenced the OII decolorization by PS/Fe0 system, resulting in the generation of chlorine-containing by-products. OII containing Cl− solution can be efficiently decolorized by PS/Fe0 process, and the decolorization efficiencies changed depending on Cl− concentration due to the reaction between Cl− and sulfate radicals (SO4–•). The operating cost for 94% color and 64% chemical oxygen demand (COD) removal of the OII dye was estimated at 0.73 USD/m3. The chlorine-containing by-products, such as chlorobenzene, 3,5-dichloro-benzene-1,2-diol, and 2,3-dichloro-2,3-dihydro-1,4-naphthoquinone, were generated during the reaction. The results further indicated that increasing both PS concentration and temperature enhanced OII decolorization and reduced the generation of chlorine-containing intermediates. The addition of ultrasound can further decrease the generation of chlorine-containing intermediates under high-temperature conditions. The proposed pathways of decolorization of OII containing Cl− also indicated that SO4–• dominated the OII degradation, while the presence of Cl− led to the generation of chlorine-containing intermediates.


2015 ◽  
Vol 280 ◽  
pp. 623-633 ◽  
Author(s):  
Barbara Darsinou ◽  
Zacharias Frontistis ◽  
Maria Antonopoulou ◽  
Ioannis Konstantinou ◽  
Dionissios Mantzavinos

Sign in / Sign up

Export Citation Format

Share Document