Catalytic performance of hierarchical metal oxides for per-oxidative degradation of pyridine in aqueous solution

2017 ◽  
Vol 309 ◽  
pp. 753-765 ◽  
Author(s):  
Seema Singh ◽  
Shang-Lien Lo
2022 ◽  
Vol 573 ◽  
pp. 151430
Author(s):  
Jiabin Dan ◽  
Pinhua Rao ◽  
Qiongfang Wang ◽  
Min Zhang ◽  
Zedi He ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Hui Wang ◽  
Meiyin Wang ◽  
Jining Shang ◽  
Yuanhang Ren ◽  
Bin Yue ◽  
...  

In this work various amount of phosphomolybdic acid (PMo) were immobilized on amine functionalized SBA-15 and used as heterogeneous catalysts in the epimerization of glucose in aqueous solution. 13.3PMo/NH2-SBA-15 exhibited the best catalytic performance with a glucose conversion of 34.8% and mannose selectivity of 85.6% within two hours at 120 °C. The activation energy of 80.1 ± 0.1 kJ·mol−1 was lower than that of 96 kJ·mol−1 over the homogeneous H3PMo12O40 catalyst. The catalytic activities of 13.3PMo/NH2-SBA-15 for the transformation of some other aldoses including mannose, arabinose and xylose were also investigated.


2018 ◽  
Vol 47 (48) ◽  
pp. 17342-17348 ◽  
Author(s):  
Euiyoung Jung ◽  
Jae Kyeom Kim ◽  
Hyungsuk Choi ◽  
Min Hyung Lee ◽  
Taekyung Yu

Transition metal LDH nanoplates were synthesized by heating an aqueous solution containing a metal salt, PEG, and octylamine. The LDH nanoplates showed comparable electrochemical catalytic performance for the oxygen evolution reaction.


2011 ◽  
Vol 356-360 ◽  
pp. 1528-1534
Author(s):  
Wei Fang Dong

A series of non-precious metal oxides catalysts were prepared for low-temperature selective catalytic reduction (SCR) of NOx with NH3 in a fixed bed reactor. The catalytic performance was evaluated by the removal efficiency of NOx and N2selectivity which were respectively detected by flue gas analyzer and flue gas chromatograph. Furthermore, the components of gas products from the above experiments were analysed with 2010 GC-MS. The results illustrated that the MnO2exhibited the highest NOx conversion to 95.46% and the highest selectivity of N2to 100% at temperature of 393K, then followed ZrO2, Al2O3and Fe2O3.


2015 ◽  
Vol 5 (3) ◽  
pp. 1568-1579 ◽  
Author(s):  
Yuxian Gao ◽  
Kangmin Xie ◽  
Wendong Wang ◽  
Shiyang Mi ◽  
Ning Liu ◽  
...  

MWCNT supported CuO–CeO2 catalysts show enhanced performance in CO-PROX due to unusual structure features induced by interactions between metal oxides and MWCNT.


2010 ◽  
Vol 178 ◽  
pp. 65-70 ◽  
Author(s):  
Sheng Rui Xu ◽  
Qin Shuai ◽  
Jin Hua Cheng ◽  
Xiao Ge Wang

A new catalyst of gold supported on nanometal oxide for oxidation of SO2 was developed. Deposition-precipitation method was used to prepare gold-based catalysts. The catalytic activity of the catalysts was evaluated by determining the concentration of SO2 with gas chromatography under reaction temperature from 100 to 700°C. The results showed that there was an enhancement of catalytic activity when gold nanoparticles were dispersed on the surface of nano-metal oxides, furthermore, γ-Fe2O3 showed the highest activity as the support of the colloidal gold supported catalysts among the nanometal oxides including γ-Fe2O3, Fe2O3, ZnO, and Al2O3. It was also found that water vapour in the reaction enhanced the catalytic activity of Au/γ-Fe2O3. The Au/γ-Fe2O3 was characterized by XRD and FTIR methods, which indicated that the gold nanoparticles were dispersed on the γ-Fe2O3 support and sulfate species were formed on the surface of catalysts.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Juanjuan Zhao ◽  
Yujiao Sun ◽  
Fachao Wu ◽  
Minjian Shi ◽  
Xurui Liu

Antibiotic residues and antibiotic resistance genes (ARGs) pose a great threat to public health and food security via the horizontal transfer in the food production chain. Oxidative degradation of amoxicillin (AMO) in aqueous solution by thermally activated persulfate (TAP) was investigated. The AMO degradation followed a pseudo-first-order kinetic model at all tested conditions. The pseudo-first-order rate constants of AMO degradation well-fitted the Arrhenius equation when the reaction temperature ranged from 35°C to 60°C, with the apparent activate energy of 126.9 kJ·mol−1. High reaction temperature, high initial persulfate concentration, low pH, high Cl− concentration, and humic acid (HA) concentration increased the AMO degradation efficiency. The EPR test demonstrated that both ·OH and SO4·− were generated in the TAP system, and the radical scavenging test identified that the predominant reactive radical species were SO4·− in aqueous solution without adjusting the solution pH. In groundwater and drinking water, AMO degradation suggested that TAP could be a reliable technology for water remediation contaminated by AMO in practice.


Sign in / Sign up

Export Citation Format

Share Document