Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater

2017 ◽  
Vol 312 ◽  
pp. 79-98 ◽  
Author(s):  
Jianlong Wang ◽  
Zhiyong Bai
Encyclopedia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 131-143
Author(s):  
Savvina Psaltou ◽  
Manassis Mitrakas ◽  
Anastasios Zouboulis

Catalytic membrane ozonation is a hybrid process that combines membrane filtration and catalytic ozonation. The membrane deposited with an appropriate solid material acts as catalyst. As a consequence, the catalytic membrane contactor can act simultaneously as contactor (i.e., improving the transfer/dissolution of gaseous ozone into the liquid phase), as well as reactor (i.e., oxidizing the organic compounds). It can be used in water and wastewater treatment limiting the disadvantages of membrane filtration (i.e., lower removal rates of emerging contaminants or fouling occurrence) and ozonation (i.e., selective oxidation, low mineralization rates, or bromate (BrO3−) formation). The catalytic membrane ozonation process can enhance the removal of micropollutants and bacteria, inhibit or decrease the BrO3− formation and additionally, restrict the membrane fouling (i.e., the major/common problem of membranes’ use). Nevertheless, the higher operational cost is the main drawback of these processes.


Author(s):  
Işıl Akmehmet Balcıoğlu ◽  
Çiğdem Kıvılcımdan Moral

AbstractCatalytic ozonation is a promising treatment method for both water and wastewater. In this study, in order to increase the biodegradability of bleaching wastewater from an integrated pulp- and -paper production plant, granulated activated carbon-(GAC), iron-(Fe


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guhankumar Ponnusamy ◽  
Hajar Farzaneh ◽  
Yongfeng Tong ◽  
Jenny Lawler ◽  
Zhaoyang Liu ◽  
...  

AbstractHeterogeneous catalytic ozonation is an effective approach to degrade refractory organic pollutants in water. However, ozonation catalysts with combined merits of high activity, good reusability and low cost for practical industrial applications are still rare. This study aims to develop an efficient, stable and economic ozonation catalyst for the degradation of Ibuprofen, a pharmaceutical compound frequently detected as a refractory pollutant in treated wastewaters. The novel three-dimensional network-structured catalyst, comprising of δ-MnO2 nanosheets grown on woven carbon microfibers (MnO2 nanosheets/carbon microfiber), was synthesized via a facile hydrothermal approach. Catalytic ozonation performance of Ibuprofen removal in water using the new catalyst proves a significant enhancement, where Ibuprofen removal efficiency of close to 90% was achieved with a catalyst loading of 1% (w/v). In contrast, conventional ozonation was only able to achieve 65% removal efficiency under the same operating condition. The enhanced performance with the new catalyst could be attributed to its significantly increased available surface active sites and improved mass transfer of reaction media, as a result of the special surface and structure properties of this new three-dimensional network-structured catalyst. Moreover, the new catalyst displays excellent stability and reusability for ibuprofen degradation over successive reaction cycles. The facile synthesis method and low-cost materials render the new catalyst high potential for industrial scaling up. With the combined advantages of high efficiency, high stability, and low cost, this study sheds new light for industrial applications of ozonation catalysts.


2017 ◽  
Vol 89 ◽  
pp. 81-85 ◽  
Author(s):  
Yue Liu ◽  
Shiyuan Wang ◽  
Weijin Gong ◽  
Zhonglin Chen ◽  
Haifang Liu ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (25) ◽  
pp. 20858-20866 ◽  
Author(s):  
Alireza Khataee ◽  
Tannaz Sadeghi Rad ◽  
Mehrangiz Fathinia ◽  
Sang Woo Joo

This study investigates nalidixic acid degradationviaheterogeneous catalytic ozonation using clinoptilolite nanorods (CNs) as a novel nanocatalyst.


Author(s):  
Yang Hu ◽  
Yue Peng ◽  
Wen Liu ◽  
Dongye Zhao ◽  
Jie Fu

Conventional water/wastewater treatment methods are incapable of removing the majority of Emerging Contaminants (ECs) and a large amount of them and their metabolites are ultimately released to the aquatic environment or drinking water distribution networks. Recently, nanofiltration, a high pressure membrane filtration process, has shown to be superior to other conventional filtration methods, in terms of effluent quality, easy operation and maintenance procedures, low cost, and small required operational space. This chapter provides a comprehensive overview of the most relevant works available in literature reporting the use of nanofiltration for the removal of emerging contaminants from water and wastewater. The fundamental knowledge of nanofiltration such as separation mechanisms, characterization of nanofiltration membranes, and predictive modeling has also been introduced. The literature review has shown that nanofiltration is a promising tool to treat ECs in environmental cleaning and water purification processes.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 241 ◽  
Author(s):  
Bing Wang ◽  
Huan Zhang ◽  
Feifei Wang ◽  
Xingaoyuan Xiong ◽  
Kun Tian ◽  
...  

Catalytic ozonation is believed to belong to advanced oxidation processes (AOPs). Over the past decades, heterogeneous catalytic ozonation has received remarkable attention as an effective process for the degradation of refractory organics in wastewater, which can overcome some disadvantages of ozonation alone. Metal oxides, metals, and metal oxides supported on oxides, minerals modified with metals, and carbon materials are widely used as catalysts in heterogeneous catalytic ozonation processes due to their excellent catalytic ability. An understanding of the application can provide theoretical support for selecting suitable catalysts aimed at different kinds of wastewater to obtain higher pollutant removal efficiency. Therefore, the main objective of this review article is to provide a summary of the accomplishments concerning catalytic ozonation to point to the major directions for choosing the catalysts in catalytic ozonation in the future.


Sign in / Sign up

Export Citation Format

Share Document