Copper tungsten sulfide anchored on Ni-foam as a high-performance binder free negative electrode for asymmetric supercapacitor

2019 ◽  
Vol 359 ◽  
pp. 409-418 ◽  
Author(s):  
Parthiban Pazhamalai ◽  
Karthikeyan Krishnamoorthy ◽  
Surjit Sahoo ◽  
Vimal Kumar Mariappan ◽  
Sang -Jae Kim
NANO ◽  
2018 ◽  
Vol 13 (07) ◽  
pp. 1850078 ◽  
Author(s):  
An Ye ◽  
Jiqiu Qi ◽  
Yanwei Sui ◽  
Fei Yang ◽  
Fuxiang Wei ◽  
...  

A solid-state energy storage device has been fabricated using FeCo-selenide nanosheet arrays as positive electrode and Fe2O3 nanorod as negative electrode. As an electrode material, the ternary FeCo-selenide nanosheet arrays supported by Ni foam show a highest specific capacitance of 978 F/g (specific capacity of 163[Formula: see text]mAh/g) at 1 A/g and a superior cycle behavior of 81.2% are obtained after 5000 cycles at current density of 4 A/g. The asymmetric supercapacitor achieves the maximum energy density of 34.6[Formula: see text]W[Formula: see text]h/kg at the power density of 759.6[Formula: see text]W/kg. Furthermore, the superior cycling stability with 83% retention of initial capacitance after 5000 cycles further verify the practical applications of FeCo-selenide//Fe2O3 asymmetric supercapacitor. Meanwhile, the LED bulb and the light board of “CUMT” are lighted by connecting several capacitors to form a series circuit.


2021 ◽  
Author(s):  
Arunpandiyan Surulinathan ◽  
Raja Annamalai ◽  
Vinoth S ◽  
Alagarsamy Pandikumar ◽  
Ayyaswamy Arivarasan

Developing high-performance, robust, and economic supercapacitor is a promising path to the future electric vehicle’s technology. Herein, a hierarchically porous CeO2 micro rice was attached on the Ni foam surface...


2018 ◽  
Vol 53 (23) ◽  
pp. 16074-16085 ◽  
Author(s):  
Jiqiu Qi ◽  
Jingwen Mao ◽  
Anbang Zhang ◽  
Liyang Jiang ◽  
Yanwei Sui ◽  
...  

2021 ◽  
Author(s):  
yajun JI ◽  
Fei Chen ◽  
Shufen Tan ◽  
Fuyong Ren

Abstract Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5 nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F/cm2 at 3 mA/cm2 and excellent rate capability of maintaining 61.69 % at 20 mA/cm2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220 μWh/cm2 at 2400 μW/cm2 and extraordinary cycling durability with the 100.0 % capacitance retention over 8000 cycles at 20 mA/cm2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.


2018 ◽  
Vol 47 (19) ◽  
pp. 6722-6728 ◽  
Author(s):  
Subbukalai Vijayakumar ◽  
Sadayappan Nagamuthu ◽  
Kwang-Sun Ryu

MgCo2O4 nanosheets grown on Ni-foam exhibited a maximum specific capacity of 947 C g−1 at 2 A g−1.


Nanoscale ◽  
2018 ◽  
Vol 10 (29) ◽  
pp. 13883-13888 ◽  
Author(s):  
Surjit Sahoo ◽  
Karthikeyan Krishnamoorthy ◽  
Parthiban Pazhamalai ◽  
Sang -Jae Kim

A novel negative electrode based on copper molybdenum sulfide (CMS) nanostructures prepared through a facile method for supercapacitor applications.


2021 ◽  
pp. 163231
Author(s):  
Chia-En Hsieh ◽  
Ching Chang ◽  
Shivam Gupta ◽  
Chung-Hsuan Hsiao ◽  
Chi-Young Lee ◽  
...  

2020 ◽  
Vol 32 ◽  
pp. 101899
Author(s):  
Jing Wang ◽  
Shen Wang ◽  
Ye Tian ◽  
Xiangyang Jin ◽  
Jing Dong

Sign in / Sign up

Export Citation Format

Share Document