Synthesis of branched WO3@W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance

2020 ◽  
Vol 389 ◽  
pp. 124474 ◽  
Author(s):  
Chengyang Feng ◽  
Lin Tang ◽  
Yaocheng Deng ◽  
Jiajia Wang ◽  
Wangwang Tang ◽  
...  
CrystEngComm ◽  
2021 ◽  
Author(s):  
Sumana Paul ◽  
Dulal Barman ◽  
Chandra Chowdhury ◽  
Pravat Kumar Giri ◽  
Subodh Kumar De

In promoting the application of green and sustainable solution towards the photodegradation of organic dyes and toxic ions, it is urgent to fabricate semiconductor based effective and stable photocatalysts. Constructing...


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2077-2088 ◽  
Author(s):  
Daixun Jiang ◽  
Xun Sun ◽  
Xilu Wu ◽  
Shuai Zhang ◽  
Xiaofei Qu ◽  
...  

AbstractThe strategy to improve the photocatalytic removal efficiencies towards organic pollutants is still a challenge for the novel Sillen–Aurivillius perovskite type Bi4NbO8Cl. Herein, we report carbon-supported TiO2/Bi4NbO8Cl (C-TiO2/Bi4NbO8Cl) heterostructures with enhanced charge separation efficiency, which were fabricated via molten-salt flux process. The carbon-supported TiO2 particles were derived from MXene Ti3C2 precursors, and attached on plate-like Bi4NbO8Cl, acting as electron-traps to achieve supressed recombination of photo-induced charges. The improved charge separation confers C-TiO2/Bi4NbO8Cl heterostructures superior photocatalytic performance with 53% higher than pristine Bi4NbO8Cl, towards rhodamine B removal with the help of photo-induced holes. Moreover, the C-TiO2/Bi4NbO8Cl heterostructures can be expanded to deal with other water contaminants, such as methyl orange, ciprofloxacin and 2,4-dichlorophenol with 44, 25 and 13% promotion, respectively, and thus the study offers a series of efficient photocatalysts for water purification.


2021 ◽  
Vol 7 (9) ◽  
pp. eabd9061
Author(s):  
Shuai Fu ◽  
Indy du Fossé ◽  
Xiaoyu Jia ◽  
Jingyin Xu ◽  
Xiaoqing Yu ◽  
...  

Van der Waals heterostructures consisting of graphene and transition metal dichalcogenides have shown great promise for optoelectronic applications. However, an in-depth understanding of the critical processes for device operation, namely, interfacial charge transfer (CT) and recombination, has so far remained elusive. Here, we investigate these processes in graphene-WS2 heterostructures by complementarily probing the ultrafast terahertz photoconductivity in graphene and the transient absorption dynamics in WS2 following photoexcitation. We observe that separated charges in the heterostructure following CT live extremely long: beyond 1 ns, in contrast to ~1 ps charge separation reported in previous studies. This leads to efficient photogating of graphene. Furthermore, for the CT process across graphene-WS2 interfaces, we find that it occurs via photo-thermionic emission for sub-A-exciton excitations and direct hole transfer from WS2 to the valence band of graphene for above-A-exciton excitations. These findings provide insights to further optimize the performance of optoelectronic devices, in particular photodetection.


RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 94361-94364 ◽  
Author(s):  
Hongwei Huang ◽  
Ke Xiao ◽  
Fan Dong ◽  
Jinjian Wang ◽  
Xin Du ◽  
...  

Sulfur doping simultaneously endows the wide-band-gap Bi2O2CO3 promoted band energy structure and charge separation achieving enhanced visible-light photocatalytic performance for dye degradation and NO removal.


Sign in / Sign up

Export Citation Format

Share Document