MXene nanosheet stacks with tunable nanochannels for efficient molecular separation

2022 ◽  
Vol 427 ◽  
pp. 132070
Author(s):  
Jian Li ◽  
Lei Li ◽  
Yilin Xu ◽  
Junyong Zhu ◽  
Fei Liu ◽  
...  
Keyword(s):  
2017 ◽  
Vol 68 (2) ◽  
pp. 203-209
Author(s):  
Hussam Nadum Abdalraheem Al Ani ◽  
Anca Maria Cimbru ◽  
Corneliu Trisca-Rusu ◽  
Szidonia Katalin Tanczos ◽  
Adriana Cuciureanu ◽  
...  

This paper illustrates the possibility of producing iono-molecular separations using ionic colloidal ultrafiltration membrane of polysulfone synthetic solutions of cupric ions and nitro phenols through ultrafiltration assisted by polymeric nanoparticle composites based on polysulfone. In the present work, in order to reduce the operating pressure and increase the flow of water we are using the process of ultrafiltration through a polysulfone membrane in N-methylpyrrolidone 10% prepared by coagulation in isopropanol. The nanoparticles needed in colloidal ultrafiltration had been obtained through the immersion technique of precipitation of a solution of 5% PSf in N-methyl pyrrolidone containing 3% aniline in lower alcohols: methanol, ethanol, and isopropanol, followed by the oxidation of the remaining aniline in a solution of 10% hydrochloric acid and ammonium persulfate. The Nanoparticles of polysulfone (NP-PSf) and The three obtained variants of nanoparticles composites (NP-PSf-PANI) were morphologically (SEM) and (AFM), structurally and compositionally (FTIR) characterized and the results show that nanoparticles polysulfone have a much lower range than the composites. The Possibility of copper complexation by both nitrophenols, and by nanoparticle surface probably lead to the formation of more stable aggregates in the supply, which can sufficiently justify the increased retention. The Retentions of the chemical species in question use in all the tests made the same series:R NP-PSf-PANI-M] R NP-PSf-PANI-E] R NP-PSf-PANI-P] R NP-PSf


2018 ◽  
Vol 69 (7) ◽  
pp. 1603-1607
Author(s):  
Ion Spiridon Din ◽  
Anca Maria Cimbru ◽  
Abbas Abdul Kadhim Klaif Rikabi ◽  
Szidonia Katalin Tanczos ◽  
Simona Ticu (Cotorcea) ◽  
...  

The importance of removing and / or separating nitro phenols from aqueous solutions through membranes is substantiated by the multitude of recent research in the field, which broadly justifies both the economic and ecological reasons of such an approach. The present paper outlines the results of the transfer of nitro phenols through a membrane system made up of PPET impregnated polypropylene capillaries (PP) impregnated with sulfonate polyetheretherketone (SPEEK). The experiments were carried out in a PP-SPEEK capillary membrane module, with a useful size of 1 m2. Determinations made by using a 4 L / min flow rate source at a 5 mg / l nitrophenol concentration and pH 5 or pH 7, and the pH 12 receiving phase and a flow rate of 0.3 L / min, revealed that o- and p-nitrophenol were transferred much faster than m-nitrophenol (the flux is nearly double); the source phase of the system is concentrated in m-nitrophenol, and the receptor phase in o- and p-nitro phenols; the transfer data correlates with the higher water solubility of m-nitrophenol; mono nitro phenols transfer much faster than di nitrophenol, but both the mono and di nitrophenol streams decrease over time; after 4-5 hours of work, the mono nitrophenol concentration triples in the receiving phase, while the 2,4-dinitrophenol concentration doubles in the source phase.


ACS Nano ◽  
2021 ◽  
Author(s):  
Ji Hoon Kim ◽  
Gyeong Seok Park ◽  
Yong-Jae Kim ◽  
Eunji Choi ◽  
Junhyeok Kang ◽  
...  

2020 ◽  
Vol 8 (34) ◽  
pp. 17780-17789
Author(s):  
Adriano Henrique ◽  
Tanmoy Maity ◽  
Hengli Zhao ◽  
Pedro F. Brântuas ◽  
Alírio E. Rodrigues ◽  
...  

The microporous MOF MIL-140B can separate hexane isomers according to the degree of branching, linear >mono-branched >di-branched, with a remarkably high selectivity up to 10 at 343 K. GCMC simulations confirm the origins of the molecular separation.


Author(s):  
Shania Sharif ◽  
Khuram Shahzad Ahmad ◽  
Faisal Rehman ◽  
Zubeda Bhatti ◽  
Khalid Hussain Thebo

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashok Keerthi ◽  
Solleti Goutham ◽  
Yi You ◽  
Pawin Iamprasertkun ◽  
Robert A. W. Dryfe ◽  
...  

AbstractMembrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls’ material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics’ toolkit for designing smart membranes and mimicking manifold machinery of biological channels.


Sign in / Sign up

Export Citation Format

Share Document