Modeling Phase Behavior of Nano-Confined Fluids in Shale Reservoirs with A Modified Soave-Redlich-Kwong Equation of State

2021 ◽  
pp. 133661
Author(s):  
Peng Wang ◽  
Shijun Huang ◽  
Fenglan Zhao ◽  
Jin Shi ◽  
Bin Wang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

AbstractThe thermodynamics of fluids in confined (capillary) media is different from the bulk conditions due to the effects of the surface tension, wettability, and pore radius as described by the classical Kelvin equation. This study provides experimental data showing the deviation of propane vapour pressures in capillary media from the bulk conditions. Comparisons were also made with the vapour pressures calculated by the Peng–Robinson equation-of-state (PR-EOS). While the propane vapour pressures measured using synthetic capillary medium models (Hele–Shaw cells and microfluidic chips) were comparable with those measured at bulk conditions, the measured vapour pressures in the rock samples (sandstone, limestone, tight sandstone, and shale) were 15% (on average) less than those modelled by PR-EOS.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1315
Author(s):  
Jingwei Huang ◽  
Hongsheng Wang

Confined phase behavior plays a critical role in predicting production from shale reservoirs. In this work, a pseudo-potential lattice Boltzmann method is applied to directly model the phase equilibrium of fluids in nanopores. First, vapor-liquid equilibrium is simulated by capturing the sudden jump on simulated adsorption isotherms in a capillary tube. In addition, effect of pore size distribution on phase equilibrium is evaluated by using a bundle of capillary tubes of various sizes. Simulated coexistence curves indicate that an effective pore size can be used to account for the effects of pore size distribution on confined phase behavior. With simulated coexistence curves from pore-scale simulation, a modified equation of state is built and applied to model the thermodynamic phase diagram of shale oil. Shifted critical properties and suppressed bubble points are observed when effects of confinement is considered. The compositional simulation shows that both predicted oil and gas production will be higher if the modified equation of state is implemented. Results are compared with those using methods of capillary pressure and critical shift.


2016 ◽  
Author(s):  
Ali Abouie ◽  
Mohsen Rezaveisi ◽  
Saeedeh Mohebbinia ◽  
Kamy Sepehrnoori

Sign in / Sign up

Export Citation Format

Share Document