scholarly journals Revisiting Kelvin equation and Peng–Robinson equation of state for accurate modeling of hydrocarbon phase behavior in nano capillaries

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

AbstractThe thermodynamics of fluids in confined (capillary) media is different from the bulk conditions due to the effects of the surface tension, wettability, and pore radius as described by the classical Kelvin equation. This study provides experimental data showing the deviation of propane vapour pressures in capillary media from the bulk conditions. Comparisons were also made with the vapour pressures calculated by the Peng–Robinson equation-of-state (PR-EOS). While the propane vapour pressures measured using synthetic capillary medium models (Hele–Shaw cells and microfluidic chips) were comparable with those measured at bulk conditions, the measured vapour pressures in the rock samples (sandstone, limestone, tight sandstone, and shale) were 15% (on average) less than those modelled by PR-EOS.

SPE Journal ◽  
2017 ◽  
Vol 23 (03) ◽  
pp. 819-830 ◽  
Author(s):  
V. A. Torrealba ◽  
R. T. Johns

Summary Surfactant-based enhanced oil recovery (EOR) is a promising technique because of surfactant's ability to mobilize previously trapped oil by significantly reducing capillary forces at the pore scale. However, the field-implementation of these techniques is challenged by the high cost of chemicals, which makes the margin of error for the deployment of such methods increasingly narrow. Some commonly recognized issues are surfactant adsorption, surfactant partitioning to the excess phases, thermal and physical degradation, and scale-representative phase behavior. Recent contributions to the petroleum-engineering literature have used the hydrophilic/lipophilic-difference net-average-curvature (HLD-NAC) model to develop a phase-behavior equation of state (EoS) to fit experimental data and predict phase behavior away from tuned data. The model currently assumes spherical micelles and constant three-phase correlation length, which may yield errors in the bicontinuous region where micelles transition into cylindrical and planar shapes. In this paper, we introduce a new empirical phase-behavior model that is based on chemical-potential (CP) trends and HLD that eliminates NAC so that spherical micelles and the constant three-phase correlation length are no longer assumed. The model is able to describe all two-phase regions, and is shown to represent accurately experimental data at fixed composition and changing HLD (e.g., a salinity scan) as well as variable-composition data at fixed HLD. Further, the model is extended to account for surfactant partitioning into the excess phases. The model is benchmarked against experimental data (considering both pure-alkane and crude-oil cases), showing excellent fits and predictions for a wide variety of experiments, and is compared to the recently developed HLD-NAC EoS model for reference.


2016 ◽  
Vol 10 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Maria Y. Dwi ◽  
Jessica Julian ◽  
Jindrayani N. Putro ◽  
Adi T. Nugraha ◽  
Yi-Hsu Ju ◽  
...  

The solubility data of acetophenone in supercritical carbon dioxide (scCO2) were measured using a static method at several temperatures (313.15, 323.15, 333.15, and 343.15K) and pressures ranging from10 MPa to 28 MPa. The density based models (Chrastil and Del valle– Aguilera models) and the Peng-Robinson equation of state (PR-EOS) with quadratic and Stryjek-Vera combining rules were employed to correlate the experimental data. Good correlations between the calculated and experimental solubility data were obtained. The sum of squared errors (SSE) are 0.38 % and 0.37 % for Chrastil and Del Valle – Aguilera models, respectively; and 9.07 % for Peng-Robinson equation of state with quadratic combining rule and 4.00 % for Peng-Robinson equation of state with Stryjek-Vera combining rule.


Author(s):  
L. A. Toro

Objectives. This study aims to draw PT-phase envelopes and calculate the critical points for multicomponent systems using flash calculations.Methods. Flash calculations with an equation of state and a mixing rule were used to construct phase envelopes for multicomponent systems. In general, the methodology uses the Soave–RedlichKwong equation of state and Van der Waals mixing rules; and the Peng–Robinson equation of state with Wong–Sandler mixing rules and the non-random two-liquid activity coefficient model.Results. The method was applied to the following mixtures: ethane (1)–butane (2) (four different compositions); ethane (1)–propane (2) (four different compositions); butane (1)–carbon dioxide (2) (three different compositions); C2C3C4C5C6 (one composition); isobutane–methanol–methyl tertbutyl ether–1-butene (one composition); and propylene–water–isopropyl alcohol–diisopropyl ether (one composition).Conclusions. Our results agreed to a large extent with the experimental data available in the literature. For mixtures that contained CO2 , the best results were obtained using the PengRobinson equation of state and the Wong–Sandler mixing rules. Our methodology, based on flash calculations, equations of state, and mixing rules, may be viewed as a shortcut procedure for drawing phase envelopes and estimating critical points of multicomponent systems.


1981 ◽  
Vol 21 (05) ◽  
pp. 535-550 ◽  
Author(s):  
S.T. Lee ◽  
R.H. Jacoby ◽  
W.H. Chen ◽  
W.E. Culham

Abstract Experimental phase equilibrium data are presented for three reservoir oils at conditions approximating those encountered in in-situ thermal recovery processes. The fluid systems involved consist of three major groups of components: flue gas, water, and crude oil. Data were measured at temperatures from 204.4 to 371.1°C (400 to 700°F) and pressures from 6996.0 to 20785.6 kPa (1,000 to 3,000 psia). Experimental phase equilibrium data were used to develop a correlation of binary interaction coefficients of crude-oil fractions required for the Peng-Robinson equation of state. Phase equilibrium data predicted using the Peng-Robinson equation of state, using our interaction coefficients, are compared with experimental data. Generally, the Peng-Robinson equation of state predictions were in close agreement with the experimental data. Effect of feed gas/oil ratio and water/oil ratio on the equilibrium coefficients was examined through the Peng-Robinson equation of state. A study on the feasibility of representing the crude oil by only two fractions was made also. This study includes a procedure for lumping the crude-oil fractions and examples showing the importance of mixing rules in determining the pseudo critical properties of lumped fractions. Introduction The steady growth of commercial thermal recovery processes1 has created a need for basic data on phase equilibria that involve water and hydrocarbons ranging from methane to high boiling-point fractions. The in-situ thermal recovery processes often are operated at pressures above 6800 kPa (1,000 psia) and temperatures above 200°C (400°F). Experimental data and theoretical correlations on phase equilibria approximating these systems are virtually nonexistent. Early work by White and Brown2 dealt with high boiling-point hydrocarbon phase equilibria. However, the highest pressure studied was 6894.8 kPa (1,000 psia) and the lightest component was pentane. Poettmann and Mayland,3 on the basis of an empirical correlation,4 constructed charts of equilibrium coefficients, or K values, as functions of pressure and temperature for various boiling-point fractions. But the maximum pressure studied was 6894.8 kPa (1,000 psia). Later, Hoffmann et al.5 studied phase behavior of a gas-condensate system with the highest pressure reaching 20 684.3 kPa (3,000 psia) but the highest temperature investigated was only 94.2°C (201°F). In 1963, Grayson and Streed6 reported experimental vapor/liquid equilibrium data for high-temperature and high-pressure hydrocarbon systems. They also extended the Chao-Seader correlation to cover the higher temperature ranges. However, the. major light component in Grayson and Streed's system was hydrogen. Recently, because of the increasing activity in carbon dioxide flooding processes, the phase equilibria of systems involving carbon dioxide and crude oil has received attention. Simon et al.7 studied phase behavior and other properties of carbon-dioxide/reservoir-oil systems. Shelton and Yarborough8 examined phase behavior in porous media during carbon dioxide or rich-gas flooding. No extensive data on equilibrium coefficients were reported in those papers, and the temperature ranges (out of physical reality) were below 93.5°C (200°F). None of these papers surveyed included water as a component.


Author(s):  
Moilton Franco Junior ◽  
Nattacia Rocha ◽  
Warley Pereira

In this work, Peng-Robinson EOS (equation of state) was chosen to represent liquid phase behavior. Then, regarding the three acids, Lauric, Palmitic and Stearic, bulk modulus coefficients were calculated in three values of pressures (0.1, 1.0 and 2.0 GPa) and a range of temperature of 350-450 K. According to the literature, results for carbon dioxide, bulk modulus in the liquid phase is in the same line for the one in the solid phase considering the temperature dimension. Based on it, in this work, the bulk modulus was estimated at three temperatures for three acids in solid-phase by extrapolating the results in the liquid phase. Despite there are no experimental data available in the literature, these results seem to be consistent with the thermodynamic constraints, and useful discussions were provided.


Sign in / Sign up

Export Citation Format

Share Document