scholarly journals Transcriptional Elongation Factor Elongin A Regulates Retinoic Acid-Induced Gene Expression during Neuronal Differentiation

Cell Reports ◽  
2012 ◽  
Vol 2 (5) ◽  
pp. 1129-1136 ◽  
Author(s):  
Takashi Yasukawa ◽  
Shachi Bhatt ◽  
Tamotsu Takeuchi ◽  
Junya Kawauchi ◽  
Hidehisa Takahashi ◽  
...  
2008 ◽  
Vol 28 (11) ◽  
pp. 3623-3638 ◽  
Author(s):  
David E. Nowak ◽  
Bing Tian ◽  
Mohammad Jamaluddin ◽  
Istvan Boldogh ◽  
Leoncio A. Vergara ◽  
...  

ABSTRACT NF-κB plays a central role in cytokine-inducible inflammatory gene expression. Previously we empirically determined the identity of 92 members of the genetic network under direct NF-κB/RelA control that show marked heterogeneity in magnitude of transcriptional induction and kinetics of peak activation. To investigate this network further, we have applied a recently developed two-step chromatin immunoprecipitation assay that accurately reflects association and disassociation of RelA binding to its chromatin targets. Although inducible RelA binding occurs with similar kinetics on all NF-κB-dependent genes, serine 276 (Ser276)-phosphorylated RelA binding is seen primarily on a subset of genes that are rapidly induced by tumor necrosis factor (TNF), including Gro-β, interleukin-8 (IL-8), and IκBα. Previous work has shown that TNF-inducible RelA Ser276 phosphorylation is controlled by a reactive oxygen species (ROS)-protein kinase A signaling pathway. To further understand the role of phospho-Ser276 RelA in target gene expression, we inhibited its formation by ROS scavengers and antioxidants, treatments that disrupt phospho-Ser276 formation but not the translocation and DNA binding of nonphosphorylated RelA. Here we find that phospho-Ser276 RelA is required only for activation of IL-8 and Gro-β, with IκBα being unaffected. These data were confirmed in experiments using RelA−/− murine embryonic fibroblasts reconstituted with a RelA Ser276Ala mutation. In addition, we observe that phospho-Ser276 RelA binds the positive transcription elongation factor b (P-TEFb), a complex containing the cyclin-dependent kinase 9 (CDK-9) and cyclin T1 subunits. Inhibition of P-TEFb activity by short interfering RNA (siRNA)-mediated knockdown shows that the phospho-Ser276 RelA-P-TEFb complex is required for IL-8 and Gro-β gene activation but not for IκBα gene activation. These studies indicate that TNF induces target gene expression by heterogeneous mechanisms. One is mediated by phospho-Ser276 RelA formation and chromatin targeting of P-TEFb controlling polymerase II (Pol II) recruitment and carboxy-terminal domain phosphorylation on the IL-8 and Gro-β genes. The second involves a phospho-Ser276 RelA-independent activation of genes preloaded with Pol II, exemplified by the IκBα gene. Together, these data suggest that the binding kinetics, selection of genomic targets, and mechanisms of promoter induction by RelA are controlled by a phosphorylation code influencing its interactions with coactivators and transcriptional elongation factors.


2014 ◽  
Vol 53 (1) ◽  
pp. 423-435 ◽  
Author(s):  
Matheus Augusto de Bittencourt Pasquali ◽  
Vitor Miranda de Ramos ◽  
Ricardo D′Oliveira Albanus ◽  
Alice Kunzler ◽  
Luis Henrinque Trentin de Souza ◽  
...  

Endocrinology ◽  
2021 ◽  
Vol 163 (1) ◽  
Author(s):  
Fitya Mozar ◽  
Vikas Sharma ◽  
Shashank Gorityala ◽  
Jeffrey M Albert ◽  
Yan Xu ◽  
...  

Abstract We have previously reported that hexamethylene bis-acetamide inducible protein 1 (HEXIM1) inhibits the activity of ligand-bound estrogen receptor α (ERα) and the androgen receptor (AR) by disrupting the interaction between these receptors and positive transcriptional elongation factor b (P-TEFb) and attenuating RNA polymerase II (RNAPII) phosphorylation at serine 2. Functional consequences of the inhibition of transcriptional activity of ERα and AR by HEXIM1 include the inhibition of ERα- and AR-dependent gene expression, respectively, and the resulting attenuation of breast cancer (BCa) and prostate cancer (PCa) cell proliferation and growth. In our present study, we determined that HEXIM1 inhibited AKR1C3 expression in BCa and PCa cells. AKR1C3, also known as 17β-hydroxysteroid dehydrogenase (17β-HSD) type 5, is a key enzyme involved in the synthesis of 17β-estradiol (E2) and 5-dihydrotestosterone (DHT). Downregulation of AKR1C3 by HEXIM1 influenced E2 and DHT production, estrogen- and androgen-dependent gene expression, and cell proliferation. Our studies indicate that HEXIM1 has the unique ability to inhibit both the transcriptional activity of the ER and AR and the synthesis of the endogenous ligands of these receptors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Weigao Yuan ◽  
Shuai Qiu ◽  
Jisen Shi

AbstractThe differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.


Sign in / Sign up

Export Citation Format

Share Document