Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate

2015 ◽  
Vol 55 ◽  
pp. 11-16 ◽  
Author(s):  
Kittipong Kunchariyakun ◽  
Suwimol Asavapisit ◽  
Kwannate Sombatsompop
Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Tariq Ali ◽  
Abdullah Saand ◽  
Daddan Khan Bangwar ◽  
Abdul Salam Buller ◽  
Zaheer Ahmed

In today’s world, the implementation of industrial ecology for sustainable industrial development is a common practice in the field of engineering. This practice promotes the recycling of by-product wastes. One of those by-product wastes is rice husk ash. This paper describes an investigation into the effect of rice husk ash (RHA) as a partial replacement for cement, to produce lightweight, aerated concrete. Type I Portland cement, fine aggregate, and aluminum powder as an aerating agent were used in this study. The RHA was used in different replacement levels, i.e., RHA was used to replace cement at 0%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight. Aluminum powder was added during mixing at 0.5% by weight of binder to obtain lightweight, aerated concrete. Test results are presented in terms of physical, mechanical, and durability aspects that include density, compressive strength, split tensile strength, and flexural strength of concrete cured at different curing regimes, i.e., 3, 7, 28, and 90 days along with corrosion analysis, and sulphate attack at 28 days of curing. The test results show that using 10% RHA as a partial replacement of cement in aerated concrete is beneficial in triggering the strength and durability properties of concrete.


2016 ◽  
Vol 692 ◽  
pp. 94-103
Author(s):  
S.S. Samantaray ◽  
K.C. Panda ◽  
M. Mishra

Rice husk ash (RHA) is a by-product of the rice milling industry. Near about 20 million tonnes of RHA is produced annually which creates environmental pollution. Utilization of RHA as a supplementary cementitious material adds sustainability to concrete by reducing CO2 emission of cement production. But, the percentage of utilization of RHA is very less. This paper presents the results of an experimental investigation to study the effects of partial replacement of fine aggregate with RHA on mechanical properties of conventional and self-compacting concrete (SCC). The fine aggregate is replaced by RHA in conventional concrete (CC) with six different percentage by weight such as 0%, 10%, 20%, 30%, 40% and 50% having w/c ratio 0.375 with variation of super plasticiser dose, whereas in SCC the replacement of fine aggregate by RHA is 0%, 10%, 20%, 30%, 40%. The design mix for CC is targeted for M30 grade concrete. The fresh concrete test of SCC is conducted by using slump flow, T500, J-ring, L-box, U-box and V-funnel to know the filling ability, flow ability and passing ability of SCC. As fresh concrete property concerned, the result indicates that the slump flow value satisfied the EFNARC 2005 guidelines upto 30% replacement of fine aggregate with RHA whereas 40% replacement did not satisfy the guideline. As hardened concrete property concerned, the compressive strength, split-tensile strength and flexural strength of CC and SCC are determined at 7, 28 and 90 days. The test result indicates that upto 30% replacement of fine aggregate with RHA enhances the strength in CC whereas the strength enhancement in SCC upto 20% replacement.


2015 ◽  
Vol 27 (8) ◽  
pp. 04014220 ◽  
Author(s):  
Kittipong Kunchariyakun ◽  
Suwimol Asavapisit ◽  
Kwannate Sombatsompop

2013 ◽  
Vol 594-595 ◽  
pp. 93-97 ◽  
Author(s):  
Josef Hadipramana ◽  
Abdul Aziz Abdul Samad ◽  
Ahmad Zaidi Ahmad Mujahid ◽  
Noridah Mohamad ◽  
Fetra Venny Riza

Foamed concrete as aerated concrete widely used in range of constructions application, no exception to structure shield. As structure shield is important to resist on impact loading. Whilst, Rice Husk Ash (RHA) as agro-waste potentials as filler for foamed concrete. RHA that is produced by uncontrolled burning under 700oC during ± 6 hours obtain the granules contain the carbon and porous. The granules of RHA may fill the porous in matrix foamed concrete without remove the characteristic the foamed concrete its self-as aerated concrete. This investigation RHA has been used as a replacement for fine aggregate. Target density 1800 kg/m3of foamed concrete both of with and without RHA have been produced to compare their strength and characteristic of impact resistance. SEM and EDS test has been conducted to determine microstructure and chemical composition of foamed concrete with RHA. The results showed that granules of RHA filled the porous and bonded with the denser part into matrix. The presence of granules of RHA has been changing the role of the air cell of porous in foamed concrete when it was subjected to impact loading. Also the granules of RHA give the foamed concrete denser without losing its characteristic of porous entirely.


2019 ◽  
Vol 9 (4) ◽  
pp. 4534-4537
Author(s):  
A. Saand ◽  
T. Ali ◽  
M. A. Keerio ◽  
D. K. Bangwar

This paper adopts an experimental approach on the use of rice husk ash as a partial replacement of cement in the production of concrete and the consequent effects on density, compressive strength and split tensile strength of the formulated product. Rice husk ash is used as replacement of cement in different dosages of 0%, 2.5%,5%, 7.5%, 10%, 12.5%, and 15%. Results showed that 10% replacement of cement with rice husk ash is optimum. At 10% replacement of cement with RHA, the density is increased by 5.02%, the compressive strength by 22.22% and the split tensile strength by 20.45% in comparison with control aerated concrete.


2021 ◽  
Vol 15 (1) ◽  
pp. 339-346
Author(s):  
Winfred Mutungi ◽  
Raphael N. Mutuku ◽  
Timothy Nyomboi

Background: Creep in concrete is a long-term deformation under sustained loading. It is influenced by many factors, including constituent materials, environmental conditions, among others. Whenever there is an alteration in the convectional concrete preparation process, the creep characteristics need to be realistically assessed. In the present construction, rice husk ash has been used for partial replacement of cement in concrete production. This is because its properties of both tensile and compressive strength in concrete have been tested and found comparable with plain concrete. However, durability characteristics such as creep, which take place in the long run, have not been realistically assessed. Therefore, it is important to study the creep of rice husk ash concrete, which will further help in the development of a creep prediction model for such concrete for use by design engineers. Objectives: Rice husk ash was used as supplementary cementitious material in concrete, and the creep behavior was studied with the aim of producing a creep prediction model for this concrete. Methods: The cement was replaced with 10% of rice husk ash in concrete with a design strength of 30MPA. Reinforced concrete beams were cast and loaded for flexural creep 35 days after casting. The loading level was 25% of the beam’s strength at the time of loading. The creep observation was done for 60 days. The rice husk used was obtained locally from Mwea irrigation scheme in Kenya. The experiments were carried out in our school laboratory at Jomo Kenyatta university of Agriculture and Technology. Results: The creep strain data of rice husk ash concrete beams was obtained with the highest value of 620 micro strain for 60 days. The results were used to develop a creep prediction model for this concrete. Conclusion: A creep prediction model for rice husk ash concrete has been developed, which can be adopted by engineers for class 30 of concrete containing rice husk ash at a 10% replacement level.


Sign in / Sign up

Export Citation Format

Share Document