Analysis of spouted bed pressure fluctuations during particle coating

2009 ◽  
Vol 48 (6) ◽  
pp. 1129-1134 ◽  
Author(s):  
N.E.C. Lopes ◽  
V.A.S. Moris ◽  
O.P. Taranto
2010 ◽  
Vol 660-661 ◽  
pp. 573-579
Author(s):  
J.L. Vieira Neto ◽  
J.E. Borges ◽  
Claudio Roberto Duarte ◽  
Marcos A.S. Barrozo

The coating and encapsulating of particles presents many applications in the chemical, pharmaceutical, food and agricultural products industries. Among the many applications of seeds coating, the enlargement of small seeds is included in order to facilitate the planting, the addition of herbicides, fungicides, fertilizers, micronutrients and inoculation. The spouted bed has often been used in studies related to the coating of particles, due to the cyclical motion of the material, which promotes a fast axial mixture of particles and an excellent gas-particle contact. In this work, the coating of soybean seeds with inoculum and micronutrients in spouted bed has been studied. The different flow regimes were investigated using the pressure fluctuations and power spectrum. The results of the present work showed that it was possible to identify the main flow regimes and to analyze the influence of the coating in the stability of those regimes.


2005 ◽  
Vol 498-499 ◽  
pp. 270-277 ◽  
Author(s):  
Claudio Roberto Duarte ◽  
Valéria V. Murata ◽  
Marcos A.S. Barrozo

Spouted bed systems have emerged as very efficient fluid-particle contactors and find many applications in the chemical and biochemical industry. Some important applications of spouted beds include coal combustion, biochemical reactions, drying of solids, drying of solutions and suspensions, granulation, blending, grinding, and particle coating. An extensive overview can be found in Mathur and Epstein[1]. The pattern of solid and gas flows in a spouted bed was numerically simulated using a CFD modeling technique. The Eulerian-Eulerian multifluid modeling approach was applied to predict gas-solid flow behavior. A commercially available, control-volume-based code FLUENT 6.1 was chosen to carry out the computer simulations. In order to reduce computational times and required system resources, the 2D axisymmetric segregated solver was chosen. The typical flow pattern of the spouted bed was obtained in the present calculation. The simulated velocity and voidage profiles presented a good agreement qualitative and quantitative with the experimental results obtained by He et al. [4].


1997 ◽  
Vol 158 (1) ◽  
pp. 1-9 ◽  
Author(s):  
W.P. de Oliveira ◽  
J.T. Freire ◽  
J.R. Coury
Keyword(s):  

2012 ◽  
Vol 727-728 ◽  
pp. 1616-1621 ◽  
Author(s):  
Boeira Braga Matheus ◽  
Cristina dos Santos Rocha Sandra

In this research, glass beads with size range between 1.68 and 2mm were coated with 5 polymeric suspensions. The suspensions formulations differ in relation to their employment and physical properties (solids concentration, surface tension and rheology), generating different characteristics of wettability and adhesion with the nucleus. The aim of this study was to evaluate particle coating in a spouted bed through analysis of particle growth in terms of solid surface energy, wettability, and adhesion before and after the formation of the first layer of polymeric film on the particle. The solid-suspension and film-suspension systems were characterized by contact angle and surface energy. The operating conditions were fixed for all suspensions: 1.5 kg of beads, air velocity of 0.369 m/s, air temperature of 60 °C, suspension flow rate of 4 ml and atomizing pressure of 10 psig. Analyzing particle growth kinetics, different behaviors were observed and related not only to glass-suspension wettability, but also to polymeric film-suspension surface properties.


2009 ◽  
Vol 87 (3) ◽  
pp. 386-393 ◽  
Author(s):  
R.N. Marreto ◽  
M.P.G. Peixoto ◽  
C.C.C. Teixeira ◽  
L.A.P. Freitas

2009 ◽  
Vol 87 (2) ◽  
pp. 252-263 ◽  
Author(s):  
Jian Xu ◽  
Xiaojun Bao ◽  
Weisheng Wei ◽  
Hsiaotao T. Bi ◽  
John R. Grace ◽  
...  

Author(s):  
Meng Chen ◽  
Zhao Chen ◽  
Yaping Tang ◽  
Malin Liu

Abstract Particle coating process, one of the main methods to improve the particle properties, is widely used in industrial production and pharmaceutical industry. For the scale up and optimization of this process, a mechanistic and detailed study is needed or numerical simulation as an alternative way. Decomposition of substances usually involves multiple chemical reactions and produces multiple substances in the actual chemical reaction. In the study, a chemical reaction flow (CRF) model has been established based on kinetic mechanism of elementary reaction, the theory of molecular thermodynamics and the sweep theory. It was established with the comprehensive consideration of the decomposition of substances, deposition process, adhesion process, desorption process, hydrogen inhibition, and clearance effect. Then the CFD-DEM model was coupled with CRF model to simulate particle coating process by FB-CVD method, and the CFD-DEM-CRF coupling model was implemented in the software Fluent-EDEM with their user definition function (UDF) and application programming interface (API). The coating process in the spouted bed was analyzed in detail and the coating behavior under different conditions were compared at the aspects of CVD rate, coating efficiency, particle concentration distribution, particle mixing index and gas concentration distribution. It is found that the average CVD rate is 6.06 × 10−4 mg/s when the inlet gas velocity is 11 m/s and bed temperature is 1273 K, and simulation result agrees with the experimental result well. Average CVD rate and coating efficiency increase with temperature increasing, but decrease acutely with mass fraction of injected hydrogen increasing. The CFD-DEM-CRF coupling model can be developed as a basic model for investigating particle coating process in detail and depth and can provide some guidance for the operating conditions and parameters design of the spouted bed in the real coating process.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Ling Bai ◽  
Weidong Shi ◽  
Ling Zhou ◽  
Lingjie Zhang ◽  
Wei Li ◽  
...  

In industrial processes such as chemical looping combustion, single-component spouted beds of monodisperse particles are very rarely used but the spouted beds of polydisperse particles have been widely used. The flow characteristics of polydisperse particles are much more complex than the single particle fraction in a fluidized bed. To investigate the gas–solid two-phase flow characteristics of the particles with different diameters in a spouted bed, the segregation and mixing characteristics, bubble morphology, minimum spouting velocity, and pressure fluctuations of the particles with different sizes under different superficial gas velocities are studied experimentally. The results show that higher the initial bed height and larger the volume fraction of the bigger particles, higher is the minimum spouting velocity. Moreover, the magnitude of the minimum spouting velocity increases exponentially with increase in the volume fraction of the bigger particles. At low superficial gas velocity, there is a clear trend of segregation between the particles of different diameters. At moderate superficial gas velocity, the mixing trend among particles of different diameters is enhanced, and the pressure fluctuations in the bed present some degree of regularity. At high superficial gas velocity, the particles of different diameters tend to separate again, the pressure fluctuations become intense, and the particle flow turns into a turbulent state. Furthermore, when the bed becomes stable, the particles of different diameters distribute within the bed with regular stratification.


2005 ◽  
Vol 23 (9-11) ◽  
pp. 1811-1823 ◽  
Author(s):  
Marta Wilk Donida ◽  
Sandra C. S. Rocha ◽  
Flávia Bartholomeu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document