Process intensification by applying chemical looping in natural gas to dimethyl ether conversion process—Implications for process design education

Author(s):  
Fanhe Kong ◽  
Andrew Tong ◽  
Mandar V. Kathe ◽  
L.-S. Fan ◽  
David Tomasko
2017 ◽  
Vol 160 ◽  
pp. 245-253 ◽  
Author(s):  
D. Chester Upham ◽  
Zachary R. Snodgrass ◽  
Mojgan Tabatabaei Zavareh ◽  
Thomas B. McConnaughy ◽  
Michael J. Gordon ◽  
...  

Author(s):  
Miriam González-Castaño ◽  
Bogdan Dorneanu ◽  
Harvey Arellano-García

RWGS reaction thermodynamics, mechanisms and kinetics. Process design and process intensification – from lab scale to industrial applications and CO2 value chains. Pathways for further improvement of catalytic systems, reactor and process design.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


2011 ◽  
Vol 347-353 ◽  
pp. 3681-3684 ◽  
Author(s):  
Young Ho Kim ◽  
Su Gyung Lee ◽  
Byoung Kwan Yoo ◽  
Han Sol Je ◽  
Chu Sik Park

A SAPO-34 catalyst is well known to be one of the best catalysts for DME to olefins (DTO) reaction. Main products of the reaction were light olefins such as ethylene, propylene and butenes. However, the main problem is rapid deactivation of the SAPO-34 catalyst due to coke deposition during DTO reaction. In this study, various SAPO-34/ZrO2 catalysts added with ZrO2 were prepared for improving the lifetime and their physicochemical properties have been characterized by XRD and SEM. The DTO reaction over various SAPO-34/ZrO2 catalysts was carried out using a fixed bed reactor. All SAPO-34/ZrO2 catalysts showed similar activity and selectivity in the DTO reaction. The SAPO-34(9wt%)/ZrO2 catalyst was showed the best performance for the catalyst lifetime.


2021 ◽  
Vol 47 ◽  
pp. 101488
Author(s):  
Remi Chauvy ◽  
Damien Verdonck ◽  
Lionel Dubois ◽  
Diane Thomas ◽  
Guy De Weireld

Sign in / Sign up

Export Citation Format

Share Document