Correlation of microstructure and mechanical properties of various fabric reinforced geo-polymer composites after exposure to elevated temperature

2015 ◽  
Vol 41 (9) ◽  
pp. 12115-12129 ◽  
Author(s):  
Sneha Samal ◽  
Nhan Phan Thanh ◽  
Iva Petríková ◽  
Bohdana Marvalová ◽  
Katleen A.M. Vallons ◽  
...  
2016 ◽  
Vol 61 (2) ◽  
pp. 761-766 ◽  
Author(s):  
A. Zieliński ◽  
M. Sroka ◽  
A. Hernas ◽  
M. Kremzer

Abstract The HR3C is a new steel for pressure components used in the construction of boilers with supercritical working parameters. In the HR3C steel, due to adding Nb and N, the compounds such as MX, CrNbN and M23C6 precipitate during service at elevated temperature, resulting in changes in mechanical properties. This paper presents the results of microstructure investigations after ageing at 650, 700 and 750 °C for 5,000 h. The microstructure investigations were carried out using scanning and transmission electron microscopy. The qualitative and quantitative identification of the existing precipitates was carried out using X-ray analysis of phase composition. The effect elevated temperature on microstructure and mechanical properties of the examined steel was described.


2011 ◽  
Vol 120 ◽  
pp. 475-478 ◽  
Author(s):  
Yao Gui Wang ◽  
Quan An Li ◽  
Qing Zhang

The effects of antimony on the mechanical properties of magnesium alloy ZA63 have been investigated. The results show that the addition of 0.75wt.% antimony can cause the formation of Mg3Sb2 phase and enhance the mechanical properties of magnesium alloy ZA63 at room temperature and elevated temperature.


2005 ◽  
Vol 488-489 ◽  
pp. 275-278 ◽  
Author(s):  
Rong Shi Chen ◽  
Jean Jacques Blandin ◽  
Michel Suéry ◽  
En Hou Han

Mechanical properties and microstructure of extruded AZ91(-Ca) alloys have been studied in this paper. The results showed that Ca has no significant effect on reducing grain size of the extruded AZ91 alloy. The ambient temperature tensile tests showed that the ultimate and yield strength of extruded AZ91 alloy decreased by addition of Ca. At elevated temperature, Ca addition improves the yield strength of both AZ91 alloy. The variations in microstructure and mechanical properties of the AZ91 alloy are also discussed in terms of the effects of Ca on grain refinement and formation of constituent phases.


2012 ◽  
Vol 198-199 ◽  
pp. 216-219
Author(s):  
Wen Jian Liu ◽  
Quan An Li ◽  
Zhi Chen ◽  
Xiao Jie Song

The microstructure and mechanical properties of aged Mg-5.5Al-1.2Y magnesium alloy with Ca addition are investigated. The results show that with 1.0wt.% Ca addition, the phase of Al2Y is refined obviously and the phase of Mg17Al12 has a dramatic decrease in number. And, high melting point intermetallic compounds Al2Ca and Al4Ca are formed. Meanwhile, the β-Mg17Al12 phase become more dispersed. After 1.0wt.% Ca addition, the mechanical properties of the alloy at room and elevated temperature are improved.


2013 ◽  
Vol 652-654 ◽  
pp. 1059-1062
Author(s):  
Ai Li Wei ◽  
Xing Hai Liu ◽  
Kun Yu Zhang ◽  
Wei Liang

The microstructure and mechanical properties of the as-cast Zn-25Al-5Mg-2.5Si-xGd alloys at room and elevated temperature have been investigated in this work. The results show that the addition of element Gd leads to the grain refining and the formation of Al3Gd phase and GdZn12 phase in the microstructure, and the mechanical properties of the alloys rise at first and then drop with the Gd content increasing. When Gd content is 0.8wt.%, the optimization of microstructure and mechanical properties is obtained. The alloy can be increased by 13.9%, 37.7% and 45.6% in tensile strength and be increased by 13.4%, 76.9% and 78.2% in hardness at room temperature, 100°C and 180°C, respectively.


Sign in / Sign up

Export Citation Format

Share Document