Influence of Gd Content on the Microstructure and Mechanical Properties of Zn-Al-Mg-Si Alloy

2013 ◽  
Vol 652-654 ◽  
pp. 1059-1062
Author(s):  
Ai Li Wei ◽  
Xing Hai Liu ◽  
Kun Yu Zhang ◽  
Wei Liang

The microstructure and mechanical properties of the as-cast Zn-25Al-5Mg-2.5Si-xGd alloys at room and elevated temperature have been investigated in this work. The results show that the addition of element Gd leads to the grain refining and the formation of Al3Gd phase and GdZn12 phase in the microstructure, and the mechanical properties of the alloys rise at first and then drop with the Gd content increasing. When Gd content is 0.8wt.%, the optimization of microstructure and mechanical properties is obtained. The alloy can be increased by 13.9%, 37.7% and 45.6% in tensile strength and be increased by 13.4%, 76.9% and 78.2% in hardness at room temperature, 100°C and 180°C, respectively.

2010 ◽  
Vol 146-147 ◽  
pp. 267-271
Author(s):  
Chang Qing Li ◽  
Quan An Li ◽  
Xing Yuan Zhang ◽  
Qing Zhang

The microstructure and mechanical properties of aged Mg-5.5Al-0.5Y magnesium alloy with Sm addition were investigated. The results show that with proper content of Sm addition, the microstructure of Mg-5.5Al-0.5Y magnesium alloy is refined obviously. The quantity of β-Mg17Al12 phase is reduced, and Al2Sm particle phase is formed. With the increase of Sm addition, the mechanical properties of the alloy at room and elevated temperature increase at first, and then decrease. When the content of Sm is up to 1%, the values of tensile strength and elongation at room temperature,150 and 175 are up to their maxima synchronously, 244MPa/20.07%, 217MPa/18.86% and 185MPa/19.15% respectively.


2013 ◽  
Vol 800 ◽  
pp. 225-228 ◽  
Author(s):  
Xiao Jie Song ◽  
Quan An Li ◽  
San Ling Fu

The effects of Y and Gd on the microstructure and mechanical properties of AZ81 magnesium alloy were studied by alloy preparation, microstructure analysis and mechanical property testing. The results show that moderate addition of Y and Gd to AZ61 magnesium alloy can obviously refine grains of AZ61 alloy, and decrease the amount of Mg17Al12 phase. With the increase of alloying elements, the tensile strength and elongation of aged AZ61 magnesium alloy at the temperature ranging of 25°C~175°C rise at first and then drop.When content of Y and Gd is up to 2.7%,the values of tensile strength of the alloy at room temperature and 175°C are up to their maximums, 254MPa and 164MPa respectively, while the elongation of the alloy are 22.9%,18.7% respectively. Y and Gd improve the mechanical properties of AZ61 alloy because of the grain refining strengthening, solution strengthening and the dispersion strengthening.


2011 ◽  
Vol 120 ◽  
pp. 475-478 ◽  
Author(s):  
Yao Gui Wang ◽  
Quan An Li ◽  
Qing Zhang

The effects of antimony on the mechanical properties of magnesium alloy ZA63 have been investigated. The results show that the addition of 0.75wt.% antimony can cause the formation of Mg3Sb2 phase and enhance the mechanical properties of magnesium alloy ZA63 at room temperature and elevated temperature.


2013 ◽  
Vol 750-752 ◽  
pp. 671-674
Author(s):  
Rong Hua Zhang ◽  
Yong An Zhang ◽  
Bao Hong Zhu

In this paper, the Al-8.5Fe-1.3V-1.7Si alloys were fabricated by spray forming and extrusion process. The microstructure and mechanical properties of the alloy were investigated by means of metallographic, scanning electron microscope and tensile test. The results indicate that the tensile strength of the extrued alloys can reach 353MPa, the yield strength 300MPa, elongation 19.12%, at room temperature. At 250°C, the tensile strength of the extrued alloys can reach 221MPa, the yield strength 208MPa, elongation 13.33%.


2011 ◽  
Vol 239-242 ◽  
pp. 352-355
Author(s):  
Quan An Li ◽  
Qing Zhang ◽  
Chang Qing Li ◽  
Yao Gui Wang

The effects of 2-12 wt.% Y addition on the microstructure and mechanical properties of as-cast Mg-Y binary alloys have been investigated. The results show that proper content of rare earth Y addition can obviously refine the grains and form high melting point Mg24Y5 phases in the matrix, and improve the microstructure and mechanical properties of the alloys. At room temperature, the optimum combination of ultimate tensile strength and elongation, 195MPa and 7.5%, is obtained in Mg-10 wt.% Y alloy.


2005 ◽  
Vol 488-489 ◽  
pp. 385-388
Author(s):  
Qiang Li ◽  
Qu Dong Wang ◽  
Xiao Qing Zeng ◽  
Wen Jiang Ding ◽  
Quanbo Tang ◽  
...  

Nd, Y and Ca containing Mg-Zn-Zr alloys are produced by electromagnetic direct-chilling casting process, and extruded at a temperature of 643K with two extrusion ratios of 38:1 and 22:1, respectively. The grain size is markedly reduced from 80µm in as-cast alloy to 2~5µm in as-extruded alloy due to dynamic recrystallization, and lamellar eutectics at grain boundaries in as-cast alloy are broken up and fine precipitates in the matrix come forth during hot extrusions. Mechanical properties of the alloys are measured by tensile test from room temperature to 523K. Nd, Y and Ca are favorable to the strength of the hot-extruded alloy, especially the elevated-temperature strength, which is above 200MPa in ultimate tensile strength at 523K.


2014 ◽  
Vol 1035 ◽  
pp. 303-306
Author(s):  
Xiao Ya Chen ◽  
Quan An Li ◽  
Qing Zhang ◽  
Jun Chen ◽  
Hui Zhen Jiang

The microstructure and mechanical properties of Mg-6Al-1Zn-0.9Y-1.8Gd alloy have been studied by micro-analysis and tensile tests. The results showed that the alloy mainly consists of Mg matrix, Al2Y, Mg17Al12and Al2Gd. The best tensile strength of the alloy was 255 Mpa at room temperature, and the alloy still had the very high mechanical property at high temperature.


2011 ◽  
Vol 686 ◽  
pp. 96-100
Author(s):  
Shu Bo Li ◽  
Han Li ◽  
Jian Hui Li ◽  
Wen Bo Du ◽  
Zhao Hui Wang

The microstructures and mechanical properties of the Mg-Zn-Er alloys have been investigated. The results show that the alloying elements (Zn/Er) with different ratio have a great effect on the microstructure and mechanical properties of the magnesium alloys, especially for the phase constitutes. Furthermore, the more attractive result is that the quasicrystalline phase, as the main secondary phase, precipitates during solidification in the alloy with addition of Zn/Er ration of 6. The cast Mg-5Zn-0.83Er alloy exhibits the ultimate tensile strength and yield tensile strength are 190MPa and 80MPa at room temperature, respectively, with an elongation of 15%.


2011 ◽  
Vol 686 ◽  
pp. 253-259
Author(s):  
Xu Ning ◽  
Wei Dong Xie ◽  
Chun Mei Dang ◽  
Xiao Dong Peng ◽  
Yan Yang ◽  
...  

A series of Mg-6Al-2Sr-1.5Y-xNd (x=0, 0.3, 0.6, 0.9, 1.2) alloy samples were prepared and their microstructures were observed and mechanical properties were measured. The existing forms of Y and Nd were studied. The effects of Y and Nd on microstructure and mechanical properties of AJ62 alloy were investigated. The results show that the main existing forms of Y and Nd in AJ62 alloy are Al2Y and Al2Nd. The combined addition of rare earth Y and Nd can refine α-Mg matrix obviously and reduce the amount of the β-Mg17Al12phases; after solid solution treatment, the tensile strength of the alloys rise first and fall later with increasing content of Nd. When the content of Nd is about 0.6%wt, the values of tensile strengthes are up to the maximum both at room temperature and at 448 K.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yijiang Liu ◽  
Weiwu Yang ◽  
Xiaolong Chen ◽  
Haifeng Liu ◽  
Ningna Yan

Building fires and shortage of medium sand resources have become two major issues in building domain. Desert sand was used to produce desert sand concrete (DSC), which was suitable for engineering utility. The mechanical properties tests of DSC with different desert sand replacement ratio (DSRR) were carried out after elevated temperature. The effects of elevated temperature and DSRR on DSC mechanical properties were analyzed. DSC microstructure was investigated by SEM and XRD. Research studies’ results showed that the relative compressive strength increased gradually with increasing temperature. The maximum value appeared at 200°C–300°C, and it began to decrease at 500°C. Compared with room temperature, the compressive strength at 700°C was about 70% of that at room temperature. Relative splitting tensile strength increased first and then decreased, and the value reached the maximum at 100°C. DSC relative flexural strength decreased with the temperature. Relative compressive strength, splitting tensile strength, and flexural strength of DSC enhanced first and then decreased with DSRR, and the maximum values were obtained with 40% DSRR. Based on the regressive analysis, the relative compressive strength was a quadratic polynomial with relative porosity. Relative splitting tensile strength and relative flexural strength were linear with relative porosity. Research results can provide the technical support for DSC engineering application and postfire assessment.


Sign in / Sign up

Export Citation Format

Share Document