Improvement in fracture strength in electrically conductive AlN ceramics with high thermal conductivity

2016 ◽  
Vol 42 (11) ◽  
pp. 13183-13189 ◽  
Author(s):  
Takafumi Kusunose ◽  
Tohru Sekino
2011 ◽  
Vol 484 ◽  
pp. 57-60
Author(s):  
Takafumi Kusunose ◽  
Tohru Sekino ◽  
Koiichi Niihara

The electrically conductive AlN with high thermal conductivity were successfully fabricated by sintering AlN with a composite additive of 1wt.% Y2O3 and 4wt.% CeO2 in carbon-reduced atmosphere at over 1600 °C. The sudden increase in electrical conductivity is thought to be caused by transition of grain boundary phase from rare-earth oxide to rare-earth oxycarbide. Their electrical conductivities and thermal conductivities increased with increasing sintering temperature. Additionally, sintering temperature influenced the resultant microstructures.


2016 ◽  
pp. 255-280
Author(s):  
Prabhakar R. Bandaru ◽  
B.-W. Kim ◽  
S. Pfeifer ◽  
R. S. Kapadia ◽  
S.-H. Park

2013 ◽  
Vol 28 (12) ◽  
pp. 1338-1344 ◽  
Author(s):  
Jian-Feng LIN ◽  
Guan-Ming YUAN ◽  
Xuan-Ke LI ◽  
Zhi-Jun DONG ◽  
Jiang ZHANG ◽  
...  

Author(s):  
E. A. Nikolaeva ◽  
A. N. Timofeev ◽  
K. V. Mikhaylovskiy

This article describes the results of the development of a high thermal conductivity carbon fiber reinforced polymer based on carbon fiber from pitch and an ENPB matrix modified with a carbon powder of high thermal conductivity. Data of the technological scheme of production and the results of determining the physicomechanical and thermophysical characteristics of carbon fiber reinforced polymer are presented. 


2020 ◽  
Vol 22 (36) ◽  
pp. 20914-20921 ◽  
Author(s):  
Rajmohan Muthaiah ◽  
Jivtesh Garg

We report novel pathways to significantly enhance the thermal conductivity at nanometer length scales in boron phosphide through biaxial strain.


Sign in / Sign up

Export Citation Format

Share Document