Low-cost and high-performance 3D printed YBCO superconductors

2021 ◽  
Vol 47 (1) ◽  
pp. 381-387
Author(s):  
Diogo Mendes ◽  
David Sousa ◽  
Ana C. Cerdeira ◽  
Laura C.J. Pereira ◽  
Ana Marques ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 939
Author(s):  
Juan Manuel Munoz-Guijosa ◽  
Rodrigo Zapata Martínez ◽  
Adrián Martínez Cendrero ◽  
Andrés Díaz Lantada

Advances in additive manufacturing technologies and composite materials are starting to be combined into synergic procedures that may impact the biomedical field by helping to achieve personalized and high-performance solutions for low-resource settings. In this article, we illustrate the benefits of 3D-printed rapid molds, upon which composite fibers can be laminated in a direct and resource-efficient way, for the personalized development of articular splints. The rapid mold concept presented in this work allows for a flexible lamination and curing process, even compatible with autoclaves. We demonstrate the procedure by completely developing an autoclave-cured carbon fiber–epoxy composite ankle immobilizing, supporting, or protecting splint. These medical devices may support patients in their recovery of articular injuries and for promoting a more personalized medical care employing high-performance materials, whose mechanical response is analyzed and compared to that of commercial devices. In fact, this personalization is fundamental for enhanced ergonomics, comfort during rehabilitation, and overall aesthetics. The proposed design and manufacturing strategies may support the low-cost and user-centered development of a wide set of biomedical devices and help to delocalize the supply chain for involving local populations in the development of medical technology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Fernández Álvarez ◽  
Darren A. Cadman ◽  
Athanasios Goulas ◽  
M. E. de Cos Gómez ◽  
Daniel S. Engstrøm ◽  
...  

AbstractConventional planar frequency selective surfaces (FSSs) are characterized in the far-field region and they are sensitive to the incidence angle of impinging waves. In this paper, a spherical dome FSS is presented, aiming to provide improved angular stable bandpass filtering performance as compared to its planar counterpart when the FSS is placed in the near-field region of an antenna source. A comparison between the conformal FSS and a finite planar FSS is presented through simulations at the frequency range between 26 to 40 GHz in order to demonstrate the advantages of utilizing the conformal FSS in the near-field. The conformal FSS is 3D printed and copper electroplated, which leads to a low-cost and lightweight bandpass filter array. Placing it in the near-field region of a primary antenna can be used as radomes to realize compact high-performance mm-wave systems. The comparison between simulated and measured conformal FSS results is in good agreement. The challenges that arise when designing, manufacturing, and measuring this type of structure are reported and guidelines to overcome these are presented.


2019 ◽  
Author(s):  
Alperen Guver ◽  
Nafetalai Fifita ◽  
Peker Milas ◽  
Michael Straker ◽  
Michael Guy ◽  
...  

AbstractA low-cost Scanning Electrochemical Microscope (SECM) was built with a 0.6 pA current measurement capability potentiostat and submicron resolution motorized stage, using open source software and hardware tools. The high performance potentiostat with a Python graphical user interface was built based on an open source project. Arduino boards, stepper motors, a manual XY micromanipulator stage, 3D printed couplers and gears were used in building the motorized stage. An open source motor control software was used for moving the motorized stage with high precision. An inverted microscope was utilized for viewing a standard microelectrode while scanning. The setup was tested in the formation of a map of electrochemical signals from an array of pores on a parafilm membrane. As the setup will be used in future biosensing experiments, DNA hybridization detection experiments were also performed with the setup.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 610
Author(s):  
Raúl V. Haro-Baez ◽  
Jorge A. Ruiz-Cruz ◽  
Juan Córcoles ◽  
José R. Montejo-Garai ◽  
Jesús M. Rebollar

This paper presents a novel design of an eight-port directional coupler with a very compact structure and simple manufacturing, working in the Ku frequency band. One of the main goals of the design was to ease the manufacturing with a simple structure: the coupler consisted of four rectangular waveguide input ports, four rectangular waveguide output ports, and a central coupling region with only H-plane variation. A prototype was fabricated using additive manufacturing, with a combination of 3D printing and silver coating metallization. The obtained performance showed a theoretical bandwidth of 6.6% with 20 dB return loss for the input/output ports. Good agreement between simulations and measurements was obtained, validating the proposed coupler as a good trade-off for low cost 3D printing, compactness, and high performance for systems requiring a high number of ports as in phase arrays or Butler matrices.


2021 ◽  
Vol 8 ◽  
Author(s):  
Libing Liu ◽  
Dong Xiang ◽  
Yuanpeng Wu ◽  
Zuoxin Zhou ◽  
Hui Li ◽  
...  

With the development of wearable electronic devices, conductive polymer composites (CPCs) based flexible strain sensors are gaining tremendous popularity. In recent years, the applications of additive manufacturing (AM) technology (also known as 3D printing) in fabricating CPCs based flexible strain sensors have attracted the attention of researchers due to their advantages of mold-free structure, low cost, short time, and high accuracy. AM technology, based on material extrusion, photocuring, and laser sintering, produces complex and high-precision CPCs based wearable sensors through layer-by-layer stacking of printing material. Some high-performance CPCs based strain sensors are developed by employing different 3D printing technologies and printing materials. In this mini-review, we summarize and discuss the performance and applications of 3D printed CPCs based strain sensors in recent years. Finally, the current challenges and prospects of 3D printed strain sensors are also discussed to provide an insight into the future of strain sensors using 3D printing technology.


2020 ◽  
Author(s):  
Merel van der Stelt ◽  
Martin P. Grobusch ◽  
Abdul R. Koroma ◽  
Marco Papenburg ◽  
Ismaila Kebbie ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document