In-situ improved corrosion resistance of corundum-mullite refractory for the incineration of hazardous spent high-salt organic liquor by Cr2O3: Interfacial anti-erosion mechanism

Author(s):  
Guihong Han ◽  
Zhixiao Wang ◽  
Bingbing Liu ◽  
Yanfang Huang ◽  
Shengpeng Su
2021 ◽  
pp. 002199832110237
Author(s):  
V Sivaprakash ◽  
R Narayanan

Fabrication of TiO2 nanotubes (NTs) has extensive application properties due to their high corrosion resistant and compatibility with biomedical applications, the synthesis of TiO2 nanotubes over titanium has drawn interest in various fields. The synthesis of TiO2 NTs using novel in-situ step-up voltage conditions in the electrochemical anodization process is recorded in this work. For manufacturing the NTs at 1 hour of anodization, the input potential of 30, 40 and 50 V was selected. With increasing step-up voltage during the anodization process, an improvement in the NTs was observed, favoring corrosion resistance properties. The surface of NTs enhances the structure of the ribs, raising the potential for feedback over time. XRD was used to analyze phase changes, and HR-SEM analyzed surface topography. Impedance tests found that longer NTs improved the corrosion resistance.


CORROSION ◽  
10.5006/3759 ◽  
2021 ◽  
Author(s):  
Yanli Wang ◽  
Ping Wang ◽  
Changxuan Wang ◽  
Shenghua Zhang

A Cr2O3 diffusion barrier was in-situ formed between Ni coating and 316L through electroplating a Ni(NiO) transition layer firstly and then annealing at 900 °C for 8 h in Ar. The obtained Cr2O3 is dense, continuously grown and well-bonded with 316L. The diffusion and corrosion resistance of Ni coating with and without Cr2O3 diffusion barrier were investigated. No visible outer diffusion of elements was found during the heat treatment at 750 °C for 150 h and the Ni coating with a Cr2O3 diffusion barrier can provide a good protection for 316L in molten (Li,Na,K)F.


2021 ◽  
Vol 1016 ◽  
pp. 997-1002
Author(s):  
Hikaru Nagata ◽  
Masa Ono ◽  
Yasuyuki Miyazawa ◽  
Yuji Hayashi ◽  
Yoshio Bizen

To clarify the effect of the acid solution type on corrosion resistance, the corrosion behavior of stainless steel brazed joints in HCl aqueous solution was evaluated through electrochemical measurements. Anodic polarization curves of a ferritic stainless-steel base metal, Ni-based brazing filler metals, and a brazed joint were recorded. In addition, in situ observations were conducted to observe the corrosion behavior of each structure of the brazed joint. Corrosion potentials of the brazing filler metal were lower than that of the base metal. In situ observations of the brazed joint revealed the order of corrosion in aqueous hydrochloric acid. According to the electrochemical measurements, under an actual corrosive environment, the brazing filler metal can function as an anode and selectively corrode. In addition, the anodic polarization curve of the brazed joint showed values between those of the polarization curves of the brazing filler metal and the base metal, indicating that the corrosion resistance could be electrochemically evaluated in HCl aqueous solution.


RSC Advances ◽  
2020 ◽  
Vol 10 (58) ◽  
pp. 35480-35489 ◽  
Author(s):  
Xianlong Cao ◽  
Quanyou Ren ◽  
Youkun Yang ◽  
Xianglong Hou ◽  
Yongbo Yan ◽  
...  

A nesquehonite protective film with high corrosion resistance was prepared on pure Mg via a new environmentally-friendly in situ carbonation route.


Sign in / Sign up

Export Citation Format

Share Document