Modelling of gas interstitial velocity radial distribution over cross-section of a tube packed with granular catalyst bed; effects of granule shape and of lateral gas mixing

2007 ◽  
Vol 62 (9) ◽  
pp. 2491-2502 ◽  
Author(s):  
I. Ziółkowska ◽  
D. Ziółkowski
2021 ◽  
Author(s):  
Haocheng Xu ◽  
Ying Zhang ◽  
Jiajun Wang ◽  
Tuhua Zhong ◽  
Xinxin Ma ◽  
...  

AbstractA comprehensive understanding of vascular bundles is the key to elucidate the excellent intrinsic mechanical properties of bamboo. This research aims to investigate the gradient distribution of fiber volume fraction and the gradient changes in the shape of vascular bundles along the radial axis in Phyllostachys. We constructed a universal transfer-learning-based vascular bundle detection model with high precision of up to 96.97%, which can help to acquire the characteristics of vascular bundles quickly and accurately. The total number of vascular bundles, total fiber sheath area, the length, width and area of fiber sheath of individual vascular bundles within the entire cross-section were counted, and the results showed that these parameters had a strongly positive linear correlation with the outer circumference and wall thickness of bamboo culms, but the fiber volume fraction (around 25.5 %) and the length-to-width ratio of the vascular bundles (around 1.226) were relatively constant. Furthermore, we layered the cross section of bamboo according to the wall thickness finely and counted the characteristics of vascular bundle in each layer. The results showed that the radial distribution of fiber volume fraction decreased exponentially, the radial distribution of the length-to-width ratio of vascular bundle decreased quadratically, the radial distribution of the width of vascular bundle increased linearly. The trends of the gradient change in vascular bundle’s characteristics were found highly consistent among 29 bamboo species in Phyllostachys.One sentence summaryA universal vascular bundle detection model can efficiently dissect vascular bundles in Phyllostachys, and the radial gradient change of vascular bundles in cross-section are found highly consistent.


2021 ◽  
pp. 28-34
Author(s):  
Zongshuai Guo

The subject matter of the article is the radial distribution of electrons movement parameters inside electric propulsion thrusters with closed electrons drift. The radial magnetic field in Hall effect thrusters is the limits the axial flow of electrons because of interaction with azimuth electron current. In turn, this azimuth current exists as a result of rivalry between the attempt of the magnetic field to transform electrons current completely closed one and the loss of electrons rotation moment in collisions. Similar processes take place in the ionization chamber of plasma-ion thrusters with the radial magnetic field. The attempts to estimate electrons parameters through only collisions with ions and atoms inside volume have given the value of axial electrons current much lower than really being. This phenomenon is called anomalous electrons conductivity, which was tried to be explained as a consequence of various effects including "near-the-wall-conductivity", which was explained as a result of non-mirror reflection of electrons from the Langmuir layer near the walls of the thruster channel. The disadvantage of this name is the fact that the reflection of the electron occurs before reaching the surface from the potential barrier at the plasma boundary with any environment: the wall, but also with the environment vacuum. The potential distribution in the Langmuir layer is non-stationary and inhomogeneous due to the presence of so-called plasma oscillations. The definition of "conductivity" is just as unfortunate in this name, because the collisions are always not a factor of conductivity, but on the contrary – of resistance. The goal is to solve the task of electrons rotation moment distribution in the thruster channel. The methods used are the formulation of the kinetic equation for electrons distribution function over the velocities, radius, and projections of the coordinates of the instantaneous center of cyclotron rotation; solution of this equation and finding with its use the distribution of the gas-dynamic parameters of electrons along the cross-section of the channel. Conclusions. A mathematical model of electrons rotation moment dynamics is proposed, which allows using plasma-dynamics equations to analyze its distribution along the cross-section of thruster channel and to estimate the effect of "near-the-wall-conductivity" using appropriate boundary conditions.


2020 ◽  
Vol 28 (20) ◽  
pp. 29335
Author(s):  
Aleksandr Khegai ◽  
Sergei Firstov ◽  
Konstantin Riumkin ◽  
Sergey Alyshev ◽  
Fedor Afanasiev ◽  
...  

1988 ◽  
Vol 102 ◽  
pp. 71-73
Author(s):  
E. Jannitti ◽  
P. Nicolosi ◽  
G. Tondello

AbstractThe photoabsorption spectra of the carbon ions have been obtained by using two laser-produced plasmas. The photoionization cross-section of the CV has been absolutely measured and the value at threshold, σ=(4.7±0.5) × 10−19cm2, as well as its behaviour at higher energies agrees quite well with the theoretical calculations.


Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
J. P. Colson ◽  
D. H. Reneker

Polyoxymethylene (POM) crystals grow inside trioxane crystals which have been irradiated and heated to a temperature slightly below their melting point. Figure 1 shows a low magnification electron micrograph of a group of such POM crystals. Detailed examination at higher magnification showed that three distinct types of POM crystals grew in a typical sample. The three types of POM crystals were distinguished by the direction that the polymer chain axis in each crystal made with respect to the threefold axis of the trioxane crystal. These polyoxymethylene crystals were described previously.At low magnifications the three types of polymer crystals appeared as slender rods. One type had a hexagonal cross section and the other two types had rectangular cross sections, that is, they were ribbonlike.


Sign in / Sign up

Export Citation Format

Share Document